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2. INTRODUCTION 

2.1 DOCUMENT PURPOSE 

In deliverable D2.3 ς Server Multi-level software management, an IT power optimization SW 

based on real values coming from the Data Centre power chain has been deployed. The tool 

developed in D2.3 has been upgraded with a new module, called vCenter connector, which is able to 

communicate and control the virtual management tool, and it is described in D3.9-Virtualisation of IT 

tasks.  This deliverable describes how the optimization algorithm has been modified in order to take 

into account the new data provided by the vCenter connector and how this algorithm has been 

improved so that it can optimize the IT power consumption at a rack level.  Moreover, this document 

provides an explanation of how the GreenDataNet Rack controller is organized to integrate the new 

vCenter module.   
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2.2 DEFINITION, ACRONYMS AND ABBREVATIONS 

2.2.1 KEY ACRONYMS AND ABBREVATIONS 

 

BFD Best-Fit-Decreasing 

CPU Central Processing Unit 

DC Data Centre 

ESXI VMware Hypervisor 

IPC Instruction Per clock Cycles 

ISN Index Searching Node 

IT Information Technology 

LXC Linux Container 

MPKI Miss-Per-Kilo-Instruction 

PDU Power Distribution Unit 

ePDU Rack Power Distribution Unit 

PCP Peak Clustering-based Placement 

PSU Power Supply Unit 

RC Rack Controller, synonym of GC ς GreenDataNet Controller 

SLA Service Level Agreement 

SW Software 

UPS Uninterruptible Power Supply 

VM Virtual Machine 

WP Work Package 

  

  

  

  

  

  

  

  

2.3 DOCUMENT OVERVIEW 

In this deliverable we will first explain the SW architecture, detailing how the Rack Controller 

interacts with the Server Manager, including examples of the communication interface. Then, we will 

focus on the algorithm for rack energy management, describing the new opportunities for power 

optimization and how to effectively implement a correlation-aware algorithm. Finally, in the 

experiments part, we illustrate the applicability and advantages of the developed optimization 

framework through two real-life examples. 
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3.  SOFTWARE ARCHITECTURE 

3.1 COMMUNICATION MODEL OF THE GLOBAL SYSTEM 

Figure 3.1 depicts an overview of how the optimization algorithm running in the Server 

Manager (with the help from the Green Energy Controller) interfaces with the Rack Controller in 

order to take into account the new data provided by the vCenter. 

 

 

 

 

 

 

 

 

Figure 3.1 - Communication model of the global solution overview 

 

3.2 INTERACTION BETWEEN RACK CONTROLLER AND SERVER MANAGER 

3.2.1 JOINT SW STRUCTURE 

 As already explained in D2.3, the models developed by the different partners run as services. 

 

 

 

 

 

 

 

Figure 3.2 - Joint Software structure 

The Rack Controller, from Eaton, is composed by 2 functional modules: the Power Controller 

and the vCenter connector that communicate via an internal REST API detailed in D3.9. 
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The power Controller provides control and monitoring features for the UPS, ePDU (Eaton´s PDU), 

and some environmental sensors. The vCenter connector communicates directly with the 

virtualisation management tool, collecting the IT data and sending the VM migration orders. All the 

information is stored in a database that can be accessed from Eaton´s API or directly through a local 

webserver. 

3.2.1 PACKAGING OF THE RACK CONTROLLER AND SERVER MANAGER 

In order to ease the installation of the GreenDataNet Software tools developed by the different 

partners, the Softwares developed by EPFL and by EATON have been packed in one single Linux 

container running under the Debian Jessie 64 bits OS. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 - Rack Controller packaging 
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3.2.2 COMMUNICATION INTERFACE 

With the integration of the vCenter module, the JSON REST API of the Rack Controller has been 

updated with new requests for the Server Manager in order to be able to get IT information. Below it 

is detailed the list of all the new requests implemented, with an example of the format of the details 

returned based on the configuration of Figure 3-4: 

 

Figure 3-4 Test Rack configuration 

o Get the list of the servers, the method returns the list of EXSI and VM  

GET https://<host>/api/v1/asset/devices?subtype=server 
{"devices":[  

{"id" : "10","name" : "vesxi09.mbt.lab.etn.com"},  

{"id" : "11","name" : "vesxi10.mbt.lab.etn.com"},  

{"id" : "12","name" : "vesxi11.mbt.lab.etn.com"},  

{"id" : "13","name" : "vm - 011"},  

{"id" : "14","name" : "vm - 012"},  

{"i d" : "15","name" : "vm - 013"},  

{"id" : "16","name" : "vm - 021"},  

{"id" : "17","name" : "vm - 022"},  

{"id" : "18","name" : "vm - 023"},  

{"id" : "19","name" : "vm - 031"}]}  

 

o Get the details of each server. 

In the example below, the request returns the details of an ESXI. It is important to notice 

that, in addition to the standard information such as hostname and location of the ESXI, the 
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request provides also the power chain of the server and, more specifically, in which socket of 

the power distribution unit the hosting server is plugged.  

Moreover, the ext/v12n.type attribute has been implemented in order to distinguish an ESXI 

server (v12n.type = virtualization.host) from a VM (v12n.type =virtualization.machine). 

 

GET https:// <host>/api/v1/asset/device/12 
{  

"id": "1 2",  

"name": "vesxi11.mbt.lab.etn.com",  

"location_uri":"/api/v1/asset/rack/5" <-  the server is in Rack 

5,  

"type": "server",  

"hostname":"vesxi11",  

"fqdn":"vesxi11.mbt.lab.etn.com",  

"powers": [  

{"src_uri":"/api/v1/asset/device/8" <-  the first Power 

Suppl y Unit (PSU) is connected to pdu id 8, on plug 

socket 9 ,  

"src_socket":"9",  

"dest_socket":"1"},  

{"src_uri":"/api/v1/asset/device/9" <-  the second PSU of 

this server is connected to pdu id 9, socket 9 ,  

"src_socket":"9",  

"dest_socket":"2"}],  

"ext" : [  

{"desc ription":"VMware ESXi 5.5.0 build - 1331820 

hosted on vesxi11.mbt.lab.etn.com supervising by 

vcenter04.mbt.lab.etn.com",  

"read_only": false },  

{"v12n.type":"virtualization.host",  

"read_only": false } <-  This is a ESXi ]  

}  

 

This request returns the VM details 

GET https://<host>/api/v1/asset/device/19 
{  

"id": "19" ,  

"name": "vm - 031" ,  

"status": "nonactive" ,  

"business_critical": "no" ,  

"p riority": "P5" ,  

"location_uri":"/api/v1/asset/device/12" <-  The VM runs on the 

server ESXi vesxi11 (device ID=12) ,  

"groups": [] ,  

" type": "server" ,  

"powers": [] ,  

"ext" : [{"asset_tag": "20855316 - 5F9A- 4975 - 9C28- 46F3C50188F1 -

vm- 031", "read_only": true },  

{"v12n.type":"virtualization.machine","read_only": false }] <-  

This is a VM  
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..}  

 

o Get the current metrics of a VM. The available data are described in Table 3-1  

GET https://<host>/api/v1/metric/current?dev=19 
{  

"current":  

[  

{"id" : "19","name" : "vm - 031",  

"cpu" : 31.000000, <-  unit %  

"disk.nominal" : 307228632000000.000000,   <-  unit: GB  

"operatingStatus" : "In_Service", <-  VM is running  

"vm- 011!comm" : 71.000000, <-  data communication between vm - 031 

and vm - 011  

"vm- 012!comm" : 59.000000,  

"vm- 013!comm" : 67.000000,  

"vm- 021!comm" : 79.000000,  

"vm- 022!comm" : 76.000000,  

"vm- 023!comm" : 22.000000}  

]  

}  

 

Monitored IT data Value 

CPU allocation per virtual machine per server  [Hz] 

Data communication between VMs  [MBs] 

Disk size of the VMs (Total provisioned one)   [GB] 

Time when the VM has been started [Date] 

VM status Name Meaning 

In Service Powered and working 

Stopped Turned off 

Servicing Turning on phase 

Stopping Turning off phase 

Dormant Stand-by mode 

Table 3-1 List of monitored Data 

  



13 

 

o Get current metrics about the power consumption of the server (esxi11). 

To have this information, the Server Manager needs to request the power consumption per 

plug supplying the server, required previously with the request  GET VM details. 

GET https:// <host>/api/v1/metric/current?dev=8 
{  

   "current":[  

    {"id" : "8","name" : "ePDU1 - LAB",  

,"realpower.outlet.9" : 109.000000, <-  realpower of PSU1 of  server 

esxi09  

"voltage.outlet.9" : 243.730000} , é ]} 

{  

   "current":[  

    {"id" : "9","name" : "ePDU2 - LAB,  

"realpower.outlet.9" : 209.000000 , <-  realpower of PSU2 of server 

esxi09  

}    ]  

}  
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4. OPTIMIZING THE IT POWER CONSUMPTION AT THE RACK LEVEL 

The previous section explained how the optimization algorithm obtains the data provided by the 

vCenter connector. Once the data is acquired, it will be used by the datacentre management 

algorithm so that it can optimize the IT power consumption at the rack level. 

Server consolidation [3], minimizes the number of active servers by packing workloads, or virtual 

machines (VMs) in a virtualized environment, into the minimal number of active servers, is one of the 

widely used techniques to reduce the power consumption of datacentres. Instead of assuming the 

worst-case (or peak) utilization [2], recently, correlation of resources utilization patterns among VMs 

are also exploited, such that, un-correlated VMs are co-located into a server to enable overprovision 

of VMs under negligible QoS degradation [6]. Nonetheless, these existing solutions are mostly 

designed for high-performance computing (HPC) applications and do not work well for emerging 

cloud (or scale-out [10]) applications (e.g., web search, MapReduce, etc.) due to the lack of 

considerations of the characteristics of the scale-out applications: 

- User-interactive; therefore, required computing capacity is highly variable and fast-changing. 

- Latency is the first criteria to be satisfied. 

- The amounts of required CPU and memory resources are usually far beyond the level that a 

single server can sustain. 

- The memory footprint is far beyond the amount an on-chip cache can sustain; thereby, 

increasing the on-chip cache size only produces negligible performance improvement. 

Because of these aforementioned discrepancies with HPC workloads, existing datacentre power 

management solutions, which neglect or only partially consider the characteristics of scale-out 

applications, do not exploit all the opportunities to achieve global power savings. By analysing the 

workload characteristics of scale-out applications we can uncover new opportunities for power 

management in virtualized server environments. 

Our multi-objective optimization algorithm is a dynamic power management solution for servers 

hosting these new scale-out applications, especially accounting for the correlation information 

among VMs, while satisfying peak resource requirements. 

4.1 NEW OPPORTUNITIES FOR POWER MANAGEMENT 

 
Power management solutions for datacenters hosting scale-out applications should be 

different from the case of hosting HPC applications due to the distinctive characteristics of these type 
of applications. In this section, we present three principles of dynamic power management solutions 
that jointly utilize server consolidation and voltage and frequency (hereafter, v/f) scaling. 

4.1.1 CONSERVATIVE RESOURCE PROVISION WITH V/F SCALING 

 
Scale-out applications are user-interactive. Therefore, responsiveness, in terms of latency, is the 

first priority to be met [11]. Moreover, every application (or VM) is assumed to be equally important 
in clouds. Thus, we should conservatively provision VMs based on the peak (or Nth percentile 
according to QoS requirement) resource demand of each VM. The required QoS level can be 



15 

 

achieved by assigning the right number of cores because the performance is highly scalable to the 
number of allocated cores due to the high parallelism of such applications. Moreover, the resource 
demand is time-varying and is mostly lower than the value used for the core allocation. However, as 
described in [5], dynamic power gating (turning on/off cores) cannot be applicable to such 
applications due to the significant performance degradation caused by the long transition latency 
between power modes and fast changes of resource demands. Thus, dynamic v/f scaling is the only 
solution to achieve power savings while satisfying the performance requirement. Motivated by this 
observation, the proposed solution allocates the number of cores for each VM according to its peak 
(or off-peak depending on QoS level) resource demand to guarantee equal QoS levels to all VMs 
while scaling v/f level to achieve power savings. 
 

4.1.2 SHARING CORES AMONG CO-LOCATED VMS 

 
In scale-out applications, massively parallel nodes are cooperatively working by forming a cluster 

architecture [12]. For instance, in a web search application, a big set of search indexes is divided into 
multiple smaller datasets, and then allocated into multiple VMs (or servers), each of which is called 
an index searching node (ISN). Once a query arrives, each ISN independently searches matched data 
with the allocated dataset and a master (i.e., front-end) node gathers the search results from the 
multiple ISNs, then sends the results to clients. 
 
 

 

Figure 4.1 - Variations of CPU utilization of two index searching nodes (ISNs) with respect the number of clients 

The amount of required CPU utilization varies as the amount of user requests to servers 
changes over time. Figure 4.1 shows the CPU utilization traces for two VMs (all data presented in this 
section is measured using an AMD Opteron 6174 architecture within a DELL PowerEdge R815  
server), each of which is an index serving node (ISN), in a single web search cluster to process queries 
requested from the varying number of clients. As shown in the figure, the CPU utilizations of both 
VMs are highly synchronized with the variation of the number of clients. Furthermore, loads between 
VMs in a cluster are not perfectly balanced because the CPU utilization depends on the amount of 
matched results corresponding to a user request. Thus, we can improve the resource utilization by 
sharing cores among multiple VMs, such that they can flexibly use cores depending on their time-
varying resource demands. Furthermore, as analyzed in [10], the overhead of sharing cores is 
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negligible due to the large memory footprint of scale-out applications, i.e., far beyond the capacity of 
on-chip caches. 
 

 

Table 4.1 - Performance metrics of a web search application co-located with a VM running parsec benchmark:                                            

numbers in parenthesis show the case when a web search application is running alone 

Table 4.1 shows the measured performance metrics used of a web search application when it is co-
located with various applications (from PARSEC benchmark suite). We compared instruction per clock 
cycles (IPC), L2 miss-per-kilo-instruction (MPKI), and L2 miss ratio (%). The values are obtained using 
Xenoprof patched for the AMD15h Bulldozer architecture [14]. The numbers in parenthesis show the 
case before colocation. As can be seen, there are only negligible variations over all the metrics, which 
correspond to a negligible performance degradation due to cores sharing. Motivated by these 
observations, the proposed solution allocates VMs to servers such that all co-located VMs share 
cores assuming that the performance degradation is negligible. 

4.1.3 CORRELATION-AWARE VM PLACEMENT 

 
Due to the distributed operations of multiple VMs in a cluster, we can observe a high correlation 

within a cluster of scale-out applications, called intra-cluster correlation, rather than the correlation 
among different clusters (or services) targeted in other correlation-aware scheme [6]ς[9]. In Figure 4.1, 
we can observe the intra-cluster correlation between two VMs in a cluster, both of which are 
strongly synchronized with the variation of the number of clients. Thus, the proposed solution takes 
into account the pervasive correlation in scale-out applications, i.e., within a cluster as well as among 
clusters, such that correlated VMs are not co-located. 

 

4.2 CORRELATION-AWARE POWER MANAGEMENT 

 

In this section, we present the proposed datacentre power management solution. First, we 
define a cost function to efficiently quantify the level of correlation used in the proposed VM 
placement. Second, we propose the correlation-aware VM allocation scheme while sharing cores 
among co-located VMs. Finally, we provide a way to scale the v/f level to achieve power savings 
without any QoS degradation. 

We assume homogeneous servers; and each of them consists of Ncore cores with multiple 
frequency levels. 

4.2.1 EFFICIENT CORRELATION MEASURE FOR VM ALLOCATION 

The correlation of used CPU utilization between two VMs is mostly quantified with Pearson 
product-ƳƻƳŜƴǘ ŎƻǊǊŜƭŀǘƛƻƴ ŎƻŜŦŦƛŎƛŜƴǘΣ ƻǊ tŜŀǊǎƻƴΩǎ ŎƻǊǊŜƭŀǘƛƻƴ ώуϐΣ ǿƘƛŎƘ ƛǎ ŎŀƭŎǳƭŀǘŜŘ ŀǎ ǘƘŜ Ǌŀǘƛƻ 
of covariance of the two random variables to the product of their standard deviations. However, the 
overhead to calculate the metric for a certain time interval is high for a short time period because the 
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computation is concentrated at the end of the time period, as it utilizes the average values of CPU 
ǳǘƛƭƛȊŀǘƛƻƴ ǎŀƳǇƭŜǎΣ ǿƘƛŎƘ ŀǊŜ ŎƻƭƭŜŎǘŜŘ ŘǳǊƛƴƎ ŜŀŎƘ ǘƛƳŜ ǇŜǊƛƻŘΦ Lƴ ŀŘŘƛǘƛƻƴΣ tŜŀǊǎƻƴΩǎ ŎƻǊǊŜƭŀǘƛƻƴ ƛǎ 
also partly inefficient because the value reflects correlation throughout the corresponding time 
interval, even though we only require the correlation at (off-)peak utilizations in VM placement. To 
overcome the drawback and inefficiency in this metric, we propose a new cost function to quantify 
correlation between two VMs (in terms of CPU utilization), as follows: 

 

(1)   

where Costvm
i;j represents the newly defined correlation measure between VMi and VMj. ûcpu(VMi) is 

a reference utilization of VMi, which is either the peak or the Nth percentile value depending on QoS 

requirement. The numerator represents the worst-case peak CPU utilization when the peaks of two 

VMs coincide, while the denominator is an aggregated actual peak utilization when VMi and VMj are 

collocated into a same server. Thus, the higher Costvm i;j , the lower correlation between VMi and VMj 

. Moreover, we can update the values at each sampling period of utilization. Thus, we can save 

memory space to store all samples as well as evenly distributing computational effort to measure the 

correlation across a certain time horizon. 

Using our new Costvm i;j function, we can model correlations among all VMs by constructing a 2-D 

matrix, namely, Mvm cost where the (i,j)-th element corresponds to Costvm
i;j . 

 

4.2.2 CORRELATION-AWARE VM ALLOCATION 

 

We allocate VMs such that the correlation among the allocated VMs in Serveri, i.e.,

 
where nvm

i is the number of VMs allocated to Serveri, is minimized, while the sum of ûcpu(VMi;j) in 
the server does not exceed the total CPU capability of the server, i.e., Capi, as well as the number of 
the active servers is minimized. The correlation of Serveri is defined as shown in  
 
 
(2) 
 
 
where wvm i;j represents a weight of VMi;j , defined as the ratio of û(VMi;j) to the sum of ûό±aƛΤƧύΩǎ ƻŦ 
all co-located VMs in Serveri. The problem of finding optimal sets of VMs is a well-known bin-packing 
problem [15]. To reduce the solution complexity, we propose a solution based on a First-Fit-
Decreasing heuristic as shown in Figure 4.2. Our proposed algorithm is periodically invoked at every 
tperiod. The algorithm is largely divided into two phases: 1) UPDATE (lines 1-8) and 2) ALLOCATE 
(lines 9-18). In the UPDATE phase, we initialize parameters and update CPU utilization statistics. 
Then, we allocate VMs to servers in the ALLOCATE phase. 
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Figure 4.2 - The proposed correlation-aware VM placement consisting of UPDATE and ALLOCATE phases 

In the UPDATE phase, we first initialize a set of unallocated VMs (Vunalloc), sets of allocated 
VMs (Valloc i), remaining capacity (Remi ) for all servers, and a correlation threshold (THcost ) in lines 
1-4. Second, we predict the workload based on history, as we previously prepared in [15] (line 5). 
Third, we sort VMs in Vunalloc in descending order of predicted ûcpu(VMi)  to reduce the 
fragmentation of the bin-packing problem (line 6). Fourth, we update Mvm corr by updating the 
Costvm i;j  for all VM pairs (line 7). Finally, we determine the number of estimated active servers, i.e., 
Ñserver , as presented in Eqn. (3) (in line 8): 
 
 
(3) 
 
 
where ~ûcpu  represents an estimate of ûcpu . Then, Ñserver is equal to the minimum number of 
servers to accommodate all VMs in Vunalloc. We provision VMs to reduce the number of active 
servers while satisfying performance requirements. The ALLOCATE phase is iterated until all VMs are 
allocated to Ñserver servers (line 9). First, we select a server having the largest remaining CPU 
capability, i.e., Remi  (line 10). Second, we find a VM to be allocated into Serveri (line 11), which has 
the highest Costserver i  with VMs in Valloc i  , while satisfying two conditions: 1) Cost server i  should 
be larger than THcost ; and 2) ûcpu(VMi)  should be less than or equal to Remi . In case we find a VM, 
we update Valloc i  , Remi , and Vunalloc  accordingly (lines 12-15). The procedure to find VMs to be 
allocated in Serveri  is iterated until there is VM left (lines 12-16). If we have unallocated VMs at the 
end of the iteration, we repeat the procedure (from lines 10-16) with a degenerated THcost  by a 
ŦŀŎǘƻǊ ƻŦ ʰ  (line 17) along with a list of servers sorted in descending order of Remi  (line 18). 
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4.2.3 DECISION OF V/F LEVEL 

 

Once all VMs are allocated into servers, we determine an optimal v/f level for each server. 
However, we cannot exactly estimate how much we can lower v/f level when multiple VMs are 
allocated in a server because Costvm i;j  only captures the correlation between two VMs. 
 

 

 

Figure 4.3 - Relationship between weighted average correlation in Eqn. (2) and possible v/f scaling factor:                                                    

the lower bound of the possible v/f scaling factor has linear relationship with Cost server i 

Therefore, we empirically calculate the lower bound of v/f slowdown through Cost server i in 
Eqn. (2), as shown in Figure 4.3. X- and Y-axes, respectively, represent a weighted average cost 
function calculated with Eqn. (2) and the ratio of the sum of ûcpu(VMi)Ωǎ ƻŦ collocated VMs to the 
aggregated peak value of the server, which represents possible v/f slowdown. Based on the 
relationship, we can determine the frequency level of Serveri , i.e., fi , as presented in Eqn. (4): 
 
 
(4) 
 
 
where fmax is the maximum frequency level. fi is set by lowering the worst-case peak required 
frequency level (i.e., the second parenthesis assuming the situation when peaks of VMs coincide) 
with a factor of 1=Cost Server i  . 
 

5. RESULTS 

We validated the proposed datacentre power management approach in two setups. First, we 

applied the proposed solution to two web search clusters running on DELL PowerEdge R815 servers 

to validate the applicability of the proposed correlation-aware scheme for scale-out applications. 

Second, we further investigated the effectiveness to larger scale problems with the utilization traces 

obtained from a real datacenter setup. 

5.1.1 SETUP-1: DISTRIBUTED WEB SEARCH APPLICATIONS 

We built two web search clusters, i.e., Cluster1, and Cluster2, using the CloudSuite benchmarks 

[10]. Each cluster consists of three VMs: one is front-end (Tomcat-7.0.23) and two are ISNs (Nutch-

1.2). Note that the CPU utilization of the front-end is quite low compared to ISNs. Thus, we simply 

varied the allocation of VMs hosting ISNs. We annotate four ISNs as VM1;1, VM1;2, VM2;1, and 



20 

 

VM2;2 where {VM1;1; VM1;2} and {VM2;1; VM2;2} are included in Cluster1 and Cluster2, 

respectively. We used Xen-4.1 hypervisor for server virtualization and each VM has Ubuntu11.10 as 

ƛǘǎ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳ όh{ύΦ ²Ŝ ŜƳǳƭŀǘŜŘ ŎƭƛŜƴǘǎΩ ōŜƘŀǾƛƻǊ ǳǎƛƴƎ Faban-0.7 and varied the number of 

clients from 0 to 300 with the form of sine and cosine waves for Cluster1 and Cluster2, respectively. 

We used two servers each of which consists of 8 cores having two frequency levels, i.e., 1.9GHz and 

2.1GHz. 

 

Figure 5.1 - VM placements and CPU utilization traces of (a) Isolated, (b) Shared-UnCorr, and (c) Shared-Corr 

We compared three different VM allocations, as illustrated in the upper part of Figure 5.1. 1) 

Segregated where each VM is independently running on 4 cores each, 2) Shared-UnCorr where 8 

cores are shared with two VMs in a same cluster (i.e., correlation unawareness), and 3) Shared-Corr 

where 8 cores are shared with two VMs in different clusters (i.e., including correlation awareness). 

Then, Figure 5.2 shows comparisons in terms of the 90th percentile response time. 

 

Figure 5.2 - 90th percentile response time of Cluster1 and Cluster 2 for three different VM allocations  

As this figure indicates, the 90th percentile response time in Shared-UnCorr is lower than 

Segregated by 43.6% (from 0.275 to 0.155 sec) while Shared- Corr provides another 7.7% lower 

response time (from 0.155 to 0.143 sec) than Shared-UnCorr under 2.1GHz. The results can be 

explained by observing the CPU utilization traces in Figure 5.1. The X- and Y-axes represent the 

elapsed time (in sec) and the normalized CPU utilization with respect to the number of servers, 

respectively. The samples are collected at every 1 sec using a Perl script monitoring tool Xenstat.pl. 

The reason of the high response time in Segregated case is the inefficient utilization of the allocated 

cores. As shown in Figure 5.1(a), VM1;1 and VM2;2 are under-utilized while VM1;2 and VM2;1 are 

over-utilized, i.e., approaching their maximum CPU utilization levels, and needs more than 4 cores. 
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Note that the response time of the distributed web search cluster is constrained by the latest VM 

because a front-end sends results to clients only after collecting the search results from all ISNs. 

Thus, due to the deficiency of the CPU capability of the over-utilized VMs, queries must wait in a 

queue for a longer time before being processed. Thus, the response time of Segregated case 

becomes longer. On the contrary, Shared-UnCorr enables to efficiently use all the 8 cores in each 

server by flexibly scheduling VMs to the cores according to their time-varying demands. This result 

supports our claim where we anticipated that the gain attaining from sharing cores among VMs is 

much higher than the performance degradation caused by the interference among co-located VMs. 

However, the maximum CPU utilization reaches up to 0.88 because two VMs within the same cluster 

are highly correlated. Hence, the peaks of the CPU utilizations coincide. Such high CPU utilization can 

result in longer response times [13]. We can reduce the peak utilization by allocating VM considering 

correlations among VMs in Shared-Corr (Figure 5.1 (c)). In Shared-Corre, the maximum CPU utilization 

becomes even and lowered down to 0.6. The improved response time in Shared-Corr can be used to 

save power consumption by lowering the frequency level. As shown in Figure 5.2, Shared-Corr running 

with 1.9GHz provides almost similar response time (0.155 vs. 0.160 sec) to Shared running with 

2.1GHz, which results in approximately 12% power savings. 

5.1.2 SETUP-2: UTILIZATION TRACES OBTAINED FROM DATACENTER SETUPS 

 

To further investigate the effectiveness of the proposed solution, we performed another set of 

simulations using utilization traces obtained from an actual datacenter. As most of VMs are severely 

under-utilized, we selected the top 40 VMs in terms of CPU utilization. We sampled the CPU 

utilization every 5 min. for a day while synthesizing fine-grained samples per 5 sec. with a lognormal 

random number generator [16], whose mean is the same as the collected value for the 

corresponding 5-minute sample rate. Using these utilization traces, we evaluated the effectiveness of 

the proposed solution with a virtual testbed consisting of 20 servers. We targeted an Intel Xeon 

E5410 server configuration which consists of 8 cores and two frequency levels (2.0GHz and 2.3GHz), 

and used the power model proposed in [13]. We performed VM placement every 1 hour, i.e., tperiod=1 

hour, with predictions of upcoming workloads using a last-value predictor. Then, we compared the 

following three approaches of power management for datacenters: 

- Best-Fit-Decreasing (BFD): a conventional best-fit -decreasing heuristic approach. 

- Peak Clustering-based Placement (PCP) [6]: a correlation-aware VM allocation which clusters 

VMs using its Envelope-based correlation classification. 

- Proposed: the proposed correlation-aware VM allocation. 
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Table 5.1 - Comparisons for (a) static and (b) dynamic v/ f scaling 

Table 5.1(a) compares the power consumption and performance violations of the three 

approaches when we statically set the v/f level at the time of VM placement, i.e., tperiod. The power 

consumption results are normalized with respect to the power consumed by BFD, and the maximum 

violation shows the maximum per-period ratio of the number of over-utilized time instances (i.e., 

when the aggregated utilization among collocated VMs is beyond the CPU capacity of a 

corresponding server) to tperiod, during the entire periods, i.e., 24 hours. The proposed solution 

provides up to 13.7% power savings compared to BFD and PCP, while drastically reducing the number 

of the violations. It is noteworthy that PCP provides almost similar results with BFD because, due to 

high and fast-changing correlations among VMs in our utilization traces, PCP classifies VMs into only 

ΨмΩ ŎƭǳǎǘŜǊ ŘǳǊƛƴƎ ǘƘŜ Ƴƻǎǘ of the time periods (22 out of 24 time periods). When the number of 

ŎƭǳǎǘŜǊǎ ƛǎ ΨмΩ, PCP behaves exactly same with BFD. 

 

Figure 5.3 - Comparison of frequency distributions in (a) Server1 and (b) Server3 

The power savings obtained by our proposed solution are due to the aggressive-yet-safe v/f 

settings utilizing the lowered actual peak resource demand, i.e., Eqn. (4). Figure 5.3 compares the 

distributions of used frequency levels of BFD and the proposed solution in two servers (we omit the 

distribution of PCP, as it is similar to BFD). As shown in the histograms, the proposed solution uses 

the lower frequency levels more frequently. Moreover, the proposed solution provides a drastic 

reduction of the violations (i.e., 15.6%) compared to the other approaches. Note that we allocated 

VMs based on their peak utilizations, which were predicted from their history. Despite the provision 

based on the peak utilization, we observed quality degradation over the three approaches due to the 

mispredictions of the peak utilization, especially during abrupt workload changes. However, the 

proposed solution can statistically reduce the probability of the violation by co-locating uncorrelated 




