

GreenDataNet

D2.4 ς Racks Multi-Objective
Energy Management

Final
EATON
EPFL
Rev 0.4
EATON: Maria Laura Corallini, Gerald Guillaume, Arnaud Quette
EPFL: Pablo Garcia, Ali Pahlevan, David Atienza

2

TABLE OF CONTENTS

TABLE OF CONTENTS .. 2

REVISION SHEET ... 4

KEY REFERENCES AND SUPPORTING DOCUMENTATIONS ... 5

2. INTRODUCTION ... 6

2.1 Document Purpose .. 6

2.2 Definition, acronyms and abbrevations... 7

2.2.1 Key Acronyms and Abbrevations .. 7

2.3 Document overview .. 7

3. SOFTWARE ARCHITECTURE ... 8

3.1 Communication model of the Global System .. 8

3.2 Interaction between Rack Controller and server manager ... 8

3.2.1 Joint SW Structure .. 8

3.2.1 Packaging of the Rack controller and Server Manager ... 9

3.2.2 Communication Interface ... 10

4. OPTIMIZING THE IT POWER CONSUMPTION AT THE RACK LEVEL .. 14

4.1 New opportunities for power management.. 14

4.1.1 Conservative resource provision with v/f scaling ... 14

4.1.2 Sharing cores among co-located VMs ... 15

4.1.3 Correlation-aware VM placement .. 16

4.2 Correlation-aware power management .. 16

4.2.1 Efficient correlation measure for VM allocation ... 16

4.2.2 Correlation-aware VM allocation .. 17

4.2.3 Decision of v/f level .. 19

5. RESULTS .. 19

5.1.1 Setup-1: Distributed web search applications .. 19

5.1.2 Setup-2: Utilization traces obtained from datacenter setups .. 21

6. CONCLUSIONS ... 23

3

4

REVISION SHEET

Revision
Number

Date Brief summary of changes

Rev 0.1 27/07/2015 Baseline document

Rev 0.2 23/12/2015 Added IT consumption

Rev 0.3 11/01/2016 Added Experiments

Rev 0.4 12/01/2016 Format check and added conclusions

5

KEY REFERENCES AND SUPPORTING DOCUMENTATIONS

[1] WΦ YƛƳ ŀƴŘ Ŝǘ ŀƭΦΣ ά/ƻǊǊŜƭŀǘƛƻƴ-aware virtual machine allocation for energy-ŜŦŦƛŎƛŜƴǘ ŘŀǘŀŎŜƴǘŜǊǎΣέ ƛƴ Design,

Automation & Test in Europe (DATE) Conference, 2013, pp. 1345ς1350

[2] !Φ ±ŜǊƳŀΣ Ŝǘ ŀƭΦΣ άǇaŀǇǇŜǊΥ ǇƻǿŜǊ ŀƴŘ ƳƛƎǊŀǘƛƻƴ Ŏƻǎǘ ŀǿŀǊŜ ŀǇǇƭƛŎŀǘƛƻƴ ǇƭŀŎŜƳŜƴǘ ƛƴ ǾƛǊǘǳŀƭƛȊŜŘ ǎȅǎǘŜƳǎΣέ

in Proc. Middleware 2008.

[3] 9Φ tŀƪōŀȊƴƛŀΣ Ŝǘ ŀƭΦΣ άaƛƴƛƳƛȊƛƴƎ Řŀǘŀ ŎŜƴǘŜǊ ŎƻƻƭƛƴƎ ŀƴŘ ǎŜǊǾŜǊ ǇƻǿŜǊ ŎƻǎǘǎΣέ in Proc. ISLPED, 2009.
[4] bΦ .ƻōǊƻŦŦΣ Ŝǘ ŀƭΦΣ ά5ȅƴŀƳƛŎ ǇƭŀŎŜƳŜƴǘ ƻŦ ǾƛǊǘǳŀƭ ƳŀŎƘƛƴŜǎ ŦƻǊ ƳŀƴŀƎƛƴƎ ǎƭŀ ǾƛƻƭŀǘƛƻƴǎΣέ ƛƴ tǊƻŎΦ La нллтΦ

[5] 5Φ aŜƛǎƴŜǊΣ Ŝǘ ŀƭΦΣ άtƻǿŜǊ ƳŀƴŀƎŜƳŜƴǘ ƻŦ ƻƴƭƛƴŜ Řŀǘŀ-ƛƴǘŜƴǎƛǾŜ ǎŜǊǾƛŎŜǎΣέ ƛƴ tǊƻŎΦ L{/!Σ нлммΦ

[6] !Φ ±ŜǊƳŀΣ Ŝǘ ŀƭΦΣ ά{ŜǊǾŜǊ ǿƻǊƪƭƻŀŘ ŀƴŀƭȅǎƛǎ ŦƻǊ ǇƻǿǊ ƳƛƴƛƳƛȊŀǘƛƻƴ ǳǎƛƴƎ ŎƻƴǎƻƭƛŘŀǘƛƻƴΣέ ƛƴ tǊƻŎΦ ¦{9bL·Σ

2009.

[7] ·Φ aŜƴƎΣ Ŝǘ ŀƭΦΣ ά9ŦŦƛŎƛŜƴǘ ǊŜǎƻǳǊŎŜ ǇǊƻǾƛǎƛƻƴƛƴƎ ƛƴ ŎƻƳǇǳǘŜ ŎƭƻǳŘǎ Ǿƛŀ ±a ƳǳƭǘƛǇƭŜȄƛƎƴΣέ ƛƴ tǊƻŎΦ L/!/Σ

2010.

[8] aΦ /ƘŜƴΣ Ŝǘ ŀƭΦΣ ά9ŦŦŜŎǘƛǾŜ ±a ǎƛȊƛƴƎ ƛƴ ǾƛǊǘǳŀƭƛȊŜŘ Řŀǘŀ ŎŜƴǘŜǊǎΣέ ƛƴ tǊƻŎΦ LaΣ нлммΦ

[9] YΦ IŀƭŘŜǊΣ Ŝǘ ŀƭΦΣ άwƛǎƪ ŀǿŀǊŜ ǇǊƻǾƛǎƛƻƴƛƴƎ ŀƴŘ ǊŜǎƻǳǊŎŜ ŀƎƎǊŜƎŀǘƛƻƴ ōŀǎŜŘ ŎƻƴǎƻƭƛŘŀǘƛƻƴ ƻŦ ǾƛǊǘǳŀƭ

ƳŀŎƘƛƴŜǎΣέ ƛƴ tǊƻŎΦ /ƭƻǳŘΣ нлмнΦ

[10] aΦ CŜǊŘƳŀƴΣ Ŝǘ ŀƭΦΣ ά/ƭŜŀǊƛƴƎ ǘƘŜ ŎƭƻǳŘǎΥ ŀ ǎǘǳŘȅ ƻŦ ŜƳŜǊƎƛƴƎ ǎŎŀƭŜ-out workloads on modern hardwareΣέ ƛƴ

Proc. ASPLOS, 2012.

[11] 9Φ {ŎƘǳǊƳŀƴ Ŝǘ ŀƭΦΣ ά¢ƘŜ ǳǎŜǊ ŀƴŘ ōǳǎƛƴŜǎǎ ƛƳǇŀŎǘ ƻŦ ǎŜǊǾŜǊ ŘŜƭŀȅǎΣ ŀŘŘƛǘƛƻƴŀƭ ōȅǘŜǎΣ ŀƴŘ I¢¢t ŎƘǳƴƪƛƴƎ ƛƴ

ǿŜō ǎŜŀǊŎƘΣέ ƛƴ ±ŜƭƻŎƛǘȅΣ нллфΦ

[12] IΦ DƻǳŘŀǊȊΣ Ŝǘ ŀƭΦΣ ά9ƴŜǊƎȅ-efficient virtual machine replication and placement in a cloud computing

ǎȅǎǘŜƳΣέ ƛƴ tǊƻŎΦ /ƭƻǳŘ нлмнΦ

[13] aΦ tŜŘǊŀƳΣ Ŝǘ ŀƭΦΣ άtƻǿŜǊ ŀƴŘ ǇŜǊŦƻǊƳŀƴŎŜ ƳƻŘŜƭƛƴƎ ƛƴ ŀ ǾƛǊǘǳŀƭƛȊŜŘ ǎŜǊǾŜǊ ǎȅǎǘŜƳΣέ ƛƴ tǊƻŎΦ L/tt²Σ нлмлΦ
[14] !Φ aŜƴƻƴΣ Ŝǘ ŀƭΦΣ ά5ƛƎŀƴƻǎƛƴƎ ǇŜǊŦƻǊƳŀƴŎŜ ƻǾŜǊƘŜŀŘǎ ƛƴ ǘƘŜ ȄŜƴ ǾƛǊǘǳŀƭ ƳŀŎƘƛƴŜ ŜƴǾƛǊƻƴƳŜƴǘΣέ ƛƴ tǊƻŎΦ

VEE, 2005.

[15] WΦ YƛƳΣ Ŝǘ ŀƭΦΣ άCǊŜŜ ŎƻƻƭƛƴƎ-ŀǿŀǊŜ ŘȅƴŀƳƛŎ ǇƻǿŜǊ ƳŀƴŀƎŜƳŜƴǘ ŦƻǊ ƎǊŜŜƴ ŘŀǘŀŎŜƴǘŜǊǎΣέ ƛƴ tǊƻŎΦ It/{Σ

2012.

[16] ¢Φ .ŜƴǎƻƴΣ Ŝǘ ŀƭΦΣ ά¦ƴŘŜǊǎǘŀƴŘƛƴƎ Řŀǘŀ ŎŜƴǘŜǊ ǘǊŀŦŦƛŎ ŎƘŀǊŀŎǘŜǊƛǎǘƛŎǎΣέ ƛƴ !/a {LD/haa /ƻƳǇǳǘŜǊ

Communication Review, 2010.

[17] ̧ Φ DǳƻΣ Ŝǘ ŀƭΦΣ άwŜƭiability-aware power management for parallel realtime applications with precedence

ŎƻƴǎǘǊŀƛƴǘǎΣέ ƛƴ tǊƻŎΦ LD//Σ нлммΦ

6

2. INTRODUCTION

2.1 DOCUMENT PURPOSE

In deliverable D2.3 ς Server Multi-level software management, an IT power optimization SW

based on real values coming from the Data Centre power chain has been deployed. The tool

developed in D2.3 has been upgraded with a new module, called vCenter connector, which is able to

communicate and control the virtual management tool, and it is described in D3.9-Virtualisation of IT

tasks. This deliverable describes how the optimization algorithm has been modified in order to take

into account the new data provided by the vCenter connector and how this algorithm has been

improved so that it can optimize the IT power consumption at a rack level. Moreover, this document

provides an explanation of how the GreenDataNet Rack controller is organized to integrate the new

vCenter module.

7

2.2 DEFINITION, ACRONYMS AND ABBREVATIONS

2.2.1 KEY ACRONYMS AND ABBREVATIONS

BFD Best-Fit-Decreasing

CPU Central Processing Unit

DC Data Centre

ESXI VMware Hypervisor

IPC Instruction Per clock Cycles

ISN Index Searching Node

IT Information Technology

LXC Linux Container

MPKI Miss-Per-Kilo-Instruction

PDU Power Distribution Unit

ePDU Rack Power Distribution Unit

PCP Peak Clustering-based Placement

PSU Power Supply Unit

RC Rack Controller, synonym of GC ς GreenDataNet Controller

SLA Service Level Agreement

SW Software

UPS Uninterruptible Power Supply

VM Virtual Machine

WP Work Package

2.3 DOCUMENT OVERVIEW

In this deliverable we will first explain the SW architecture, detailing how the Rack Controller

interacts with the Server Manager, including examples of the communication interface. Then, we will

focus on the algorithm for rack energy management, describing the new opportunities for power

optimization and how to effectively implement a correlation-aware algorithm. Finally, in the

experiments part, we illustrate the applicability and advantages of the developed optimization

framework through two real-life examples.

8

3. SOFTWARE ARCHITECTURE

3.1 COMMUNICATION MODEL OF THE GLOBAL SYSTEM

Figure 3.1 depicts an overview of how the optimization algorithm running in the Server

Manager (with the help from the Green Energy Controller) interfaces with the Rack Controller in

order to take into account the new data provided by the vCenter.

Figure 3.1 - Communication model of the global solution overview

3.2 INTERACTION BETWEEN RACK CONTROLLER AND SERVER MANAGER

3.2.1 JOINT SW STRUCTURE

 As already explained in D2.3, the models developed by the different partners run as services.

Figure 3.2 - Joint Software structure

The Rack Controller, from Eaton, is composed by 2 functional modules: the Power Controller

and the vCenter connector that communicate via an internal REST API detailed in D3.9.

Current sensors Rack Controller

Power Data

DB

Server

Manager

R
E

S
T

 A
P

I

VM

management
tool

Power
and
IT
Data

VM optimized
placement orders

Green Energy
Controller

GDN Smart Monitoring
System

Power Devices:

UPS, PDUsΧ

IT Data

VM optimized
placement orders

P
o

w
e
r

C
o

n
tr

o
lle

r
vC

e
n
te

r
c
o

n
n
e
c
to

r

I² ƛƴŦǊŀǎǘǊǳŎǘǳǊŜ

 ±aǿŀǊŜ Ǿ/ŜƴǘŜǊ {ŜǊǾŜǊ

tƻǿŜǊ
/ƻƴǘǊƻƭƭŜǊ

Ǿ/ŜƴǘŜǊ
ŎƻƴƴŜŎǘƻǊ

IT data
VMs move orders

Server Manager

Rack Controller

Power data

 Green Energy

Controller

 UNITN

9

The power Controller provides control and monitoring features for the UPS, ePDU (Eaton´s PDU),

and some environmental sensors. The vCenter connector communicates directly with the

virtualisation management tool, collecting the IT data and sending the VM migration orders. All the

information is stored in a database that can be accessed from Eaton´s API or directly through a local

webserver.

3.2.1 PACKAGING OF THE RACK CONTROLLER AND SERVER MANAGER

In order to ease the installation of the GreenDataNet Software tools developed by the different

partners, the Softwares developed by EPFL and by EATON have been packed in one single Linux

container running under the Debian Jessie 64 bits OS.

Figure 3-3 - Rack Controller packaging

Ǿ/ŜƴǘŜǊ ŎƻƴƴŜŎǘƻǊ

tƻǿŜǊ /ƻƴǘǊƻƭƭŜǊ

Debian Jessie64 bits

[·/ /ƻƴǘŀƛƴŜǊ

Python

Server Manager

Core

Zmq,
tntnet,
mysql

vC connector-gdn

vC connector-feature

vC connector-core

karaf

openjdk

hǇŜƴ
{ƻǳǊŎŜ

10

3.2.2 COMMUNICATION INTERFACE

With the integration of the vCenter module, the JSON REST API of the Rack Controller has been

updated with new requests for the Server Manager in order to be able to get IT information. Below it

is detailed the list of all the new requests implemented, with an example of the format of the details

returned based on the configuration of Figure 3-4:

Figure 3-4 Test Rack configuration

o Get the list of the servers, the method returns the list of EXSI and VM

GET https://<host>/api/v1/asset/devices?subtype=server
{"devices":[

{"id" : "10","name" : "vesxi09.mbt.lab.etn.com"},

{"id" : "11","name" : "vesxi10.mbt.lab.etn.com"},

{"id" : "12","name" : "vesxi11.mbt.lab.etn.com"},

{"id" : "13","name" : "vm - 011"},

{"id" : "14","name" : "vm - 012"},

{"i d" : "15","name" : "vm - 013"},

{"id" : "16","name" : "vm - 021"},

{"id" : "17","name" : "vm - 022"},

{"id" : "18","name" : "vm - 023"},

{"id" : "19","name" : "vm - 031"}]}

o Get the details of each server.

In the example below, the request returns the details of an ESXI. It is important to notice

that, in addition to the standard information such as hostname and location of the ESXI, the

11

request provides also the power chain of the server and, more specifically, in which socket of

the power distribution unit the hosting server is plugged.

Moreover, the ext/v12n.type attribute has been implemented in order to distinguish an ESXI

server (v12n.type = virtualization.host) from a VM (v12n.type =virtualization.machine).

GET https:// <host>/api/v1/asset/device/12
{

"id": "1 2",

"name": "vesxi11.mbt.lab.etn.com",

"location_uri":"/api/v1/asset/rack/5" <- the server is in Rack

5,

"type": "server",

"hostname":"vesxi11",

"fqdn":"vesxi11.mbt.lab.etn.com",

"powers": [

{"src_uri":"/api/v1/asset/device/8" <- the first Power

Suppl y Unit (PSU) is connected to pdu id 8, on plug

socket 9 ,

"src_socket":"9",

"dest_socket":"1"},

{"src_uri":"/api/v1/asset/device/9" <- the second PSU of

this server is connected to pdu id 9, socket 9 ,

"src_socket":"9",

"dest_socket":"2"}],

"ext" : [

{"desc ription":"VMware ESXi 5.5.0 build - 1331820

hosted on vesxi11.mbt.lab.etn.com supervising by

vcenter04.mbt.lab.etn.com",

"read_only": false },

{"v12n.type":"virtualization.host",

"read_only": false } <- This is a ESXi]

}

This request returns the VM details

GET https://<host>/api/v1/asset/device/19
{

"id": "19" ,

"name": "vm - 031" ,

"status": "nonactive" ,

"business_critical": "no" ,

"p riority": "P5" ,

"location_uri":"/api/v1/asset/device/12" <- The VM runs on the

server ESXi vesxi11 (device ID=12) ,

"groups": [] ,

" type": "server" ,

"powers": [] ,

"ext" : [{"asset_tag": "20855316 - 5F9A- 4975 - 9C28- 46F3C50188F1 -

vm- 031", "read_only": true },

{"v12n.type":"virtualization.machine","read_only": false }] <-

This is a VM

12

..}

o Get the current metrics of a VM. The available data are described in Table 3-1

GET https://<host>/api/v1/metric/current?dev=19
{

"current":

[

{"id" : "19","name" : "vm - 031",

"cpu" : 31.000000, <- unit %

"disk.nominal" : 307228632000000.000000, <- unit: GB

"operatingStatus" : "In_Service", <- VM is running

"vm- 011!comm" : 71.000000, <- data communication between vm - 031

and vm - 011

"vm- 012!comm" : 59.000000,

"vm- 013!comm" : 67.000000,

"vm- 021!comm" : 79.000000,

"vm- 022!comm" : 76.000000,

"vm- 023!comm" : 22.000000}

]

}

Monitored IT data Value

CPU allocation per virtual machine per server [Hz]

Data communication between VMs [MBs]

Disk size of the VMs (Total provisioned one) [GB]

Time when the VM has been started [Date]

VM status Name Meaning

In Service Powered and working

Stopped Turned off

Servicing Turning on phase

Stopping Turning off phase

Dormant Stand-by mode

Table 3-1 List of monitored Data

13

o Get current metrics about the power consumption of the server (esxi11).

To have this information, the Server Manager needs to request the power consumption per

plug supplying the server, required previously with the request GET VM details.

GET https:// <host>/api/v1/metric/current?dev=8
{

 "current":[

 {"id" : "8","name" : "ePDU1 - LAB",

,"realpower.outlet.9" : 109.000000, <- realpower of PSU1 of server

esxi09

"voltage.outlet.9" : 243.730000} , é]}

{

 "current":[

 {"id" : "9","name" : "ePDU2 - LAB,

"realpower.outlet.9" : 209.000000 , <- realpower of PSU2 of server

esxi09

}]

}

14

4. OPTIMIZING THE IT POWER CONSUMPTION AT THE RACK LEVEL

The previous section explained how the optimization algorithm obtains the data provided by the

vCenter connector. Once the data is acquired, it will be used by the datacentre management

algorithm so that it can optimize the IT power consumption at the rack level.

Server consolidation [3], minimizes the number of active servers by packing workloads, or virtual

machines (VMs) in a virtualized environment, into the minimal number of active servers, is one of the

widely used techniques to reduce the power consumption of datacentres. Instead of assuming the

worst-case (or peak) utilization [2], recently, correlation of resources utilization patterns among VMs

are also exploited, such that, un-correlated VMs are co-located into a server to enable overprovision

of VMs under negligible QoS degradation [6]. Nonetheless, these existing solutions are mostly

designed for high-performance computing (HPC) applications and do not work well for emerging

cloud (or scale-out [10]) applications (e.g., web search, MapReduce, etc.) due to the lack of

considerations of the characteristics of the scale-out applications:

- User-interactive; therefore, required computing capacity is highly variable and fast-changing.

- Latency is the first criteria to be satisfied.

- The amounts of required CPU and memory resources are usually far beyond the level that a

single server can sustain.

- The memory footprint is far beyond the amount an on-chip cache can sustain; thereby,

increasing the on-chip cache size only produces negligible performance improvement.

Because of these aforementioned discrepancies with HPC workloads, existing datacentre power

management solutions, which neglect or only partially consider the characteristics of scale-out

applications, do not exploit all the opportunities to achieve global power savings. By analysing the

workload characteristics of scale-out applications we can uncover new opportunities for power

management in virtualized server environments.

Our multi-objective optimization algorithm is a dynamic power management solution for servers

hosting these new scale-out applications, especially accounting for the correlation information

among VMs, while satisfying peak resource requirements.

4.1 NEW OPPORTUNITIES FOR POWER MANAGEMENT

Power management solutions for datacenters hosting scale-out applications should be

different from the case of hosting HPC applications due to the distinctive characteristics of these type
of applications. In this section, we present three principles of dynamic power management solutions
that jointly utilize server consolidation and voltage and frequency (hereafter, v/f) scaling.

4.1.1 CONSERVATIVE RESOURCE PROVISION WITH V/F SCALING

Scale-out applications are user-interactive. Therefore, responsiveness, in terms of latency, is the

first priority to be met [11]. Moreover, every application (or VM) is assumed to be equally important
in clouds. Thus, we should conservatively provision VMs based on the peak (or Nth percentile
according to QoS requirement) resource demand of each VM. The required QoS level can be

15

achieved by assigning the right number of cores because the performance is highly scalable to the
number of allocated cores due to the high parallelism of such applications. Moreover, the resource
demand is time-varying and is mostly lower than the value used for the core allocation. However, as
described in [5], dynamic power gating (turning on/off cores) cannot be applicable to such
applications due to the significant performance degradation caused by the long transition latency
between power modes and fast changes of resource demands. Thus, dynamic v/f scaling is the only
solution to achieve power savings while satisfying the performance requirement. Motivated by this
observation, the proposed solution allocates the number of cores for each VM according to its peak
(or off-peak depending on QoS level) resource demand to guarantee equal QoS levels to all VMs
while scaling v/f level to achieve power savings.

4.1.2 SHARING CORES AMONG CO-LOCATED VMS

In scale-out applications, massively parallel nodes are cooperatively working by forming a cluster

architecture [12]. For instance, in a web search application, a big set of search indexes is divided into
multiple smaller datasets, and then allocated into multiple VMs (or servers), each of which is called
an index searching node (ISN). Once a query arrives, each ISN independently searches matched data
with the allocated dataset and a master (i.e., front-end) node gathers the search results from the
multiple ISNs, then sends the results to clients.

Figure 4.1 - Variations of CPU utilization of two index searching nodes (ISNs) with respect the number of clients

The amount of required CPU utilization varies as the amount of user requests to servers
changes over time. Figure 4.1 shows the CPU utilization traces for two VMs (all data presented in this
section is measured using an AMD Opteron 6174 architecture within a DELL PowerEdge R815
server), each of which is an index serving node (ISN), in a single web search cluster to process queries
requested from the varying number of clients. As shown in the figure, the CPU utilizations of both
VMs are highly synchronized with the variation of the number of clients. Furthermore, loads between
VMs in a cluster are not perfectly balanced because the CPU utilization depends on the amount of
matched results corresponding to a user request. Thus, we can improve the resource utilization by
sharing cores among multiple VMs, such that they can flexibly use cores depending on their time-
varying resource demands. Furthermore, as analyzed in [10], the overhead of sharing cores is

16

negligible due to the large memory footprint of scale-out applications, i.e., far beyond the capacity of
on-chip caches.

Table 4.1 - Performance metrics of a web search application co-located with a VM running parsec benchmark:

numbers in parenthesis show the case when a web search application is running alone

Table 4.1 shows the measured performance metrics used of a web search application when it is co-
located with various applications (from PARSEC benchmark suite). We compared instruction per clock
cycles (IPC), L2 miss-per-kilo-instruction (MPKI), and L2 miss ratio (%). The values are obtained using
Xenoprof patched for the AMD15h Bulldozer architecture [14]. The numbers in parenthesis show the
case before colocation. As can be seen, there are only negligible variations over all the metrics, which
correspond to a negligible performance degradation due to cores sharing. Motivated by these
observations, the proposed solution allocates VMs to servers such that all co-located VMs share
cores assuming that the performance degradation is negligible.

4.1.3 CORRELATION-AWARE VM PLACEMENT

Due to the distributed operations of multiple VMs in a cluster, we can observe a high correlation

within a cluster of scale-out applications, called intra-cluster correlation, rather than the correlation
among different clusters (or services) targeted in other correlation-aware scheme [6]ς[9]. In Figure 4.1,
we can observe the intra-cluster correlation between two VMs in a cluster, both of which are
strongly synchronized with the variation of the number of clients. Thus, the proposed solution takes
into account the pervasive correlation in scale-out applications, i.e., within a cluster as well as among
clusters, such that correlated VMs are not co-located.

4.2 CORRELATION-AWARE POWER MANAGEMENT

In this section, we present the proposed datacentre power management solution. First, we
define a cost function to efficiently quantify the level of correlation used in the proposed VM
placement. Second, we propose the correlation-aware VM allocation scheme while sharing cores
among co-located VMs. Finally, we provide a way to scale the v/f level to achieve power savings
without any QoS degradation.

We assume homogeneous servers; and each of them consists of Ncore cores with multiple
frequency levels.

4.2.1 EFFICIENT CORRELATION MEASURE FOR VM ALLOCATION

The correlation of used CPU utilization between two VMs is mostly quantified with Pearson
product-ƳƻƳŜƴǘ ŎƻǊǊŜƭŀǘƛƻƴ ŎƻŜŦŦƛŎƛŜƴǘΣ ƻǊ tŜŀǊǎƻƴΩǎ ŎƻǊǊŜƭŀǘƛƻƴ ώуϐΣ ǿƘƛŎƘ ƛǎ ŎŀƭŎǳƭŀǘŜŘ ŀǎ ǘƘŜ Ǌŀǘƛƻ
of covariance of the two random variables to the product of their standard deviations. However, the
overhead to calculate the metric for a certain time interval is high for a short time period because the

17

computation is concentrated at the end of the time period, as it utilizes the average values of CPU
ǳǘƛƭƛȊŀǘƛƻƴ ǎŀƳǇƭŜǎΣ ǿƘƛŎƘ ŀǊŜ ŎƻƭƭŜŎǘŜŘ ŘǳǊƛƴƎ ŜŀŎƘ ǘƛƳŜ ǇŜǊƛƻŘΦ Lƴ ŀŘŘƛǘƛƻƴΣ tŜŀǊǎƻƴΩǎ ŎƻǊǊŜƭŀǘƛƻƴ ƛǎ
also partly inefficient because the value reflects correlation throughout the corresponding time
interval, even though we only require the correlation at (off-)peak utilizations in VM placement. To
overcome the drawback and inefficiency in this metric, we propose a new cost function to quantify
correlation between two VMs (in terms of CPU utilization), as follows:

(1)

where Costvm
i;j represents the newly defined correlation measure between VMi and VMj. ûcpu(VMi) is

a reference utilization of VMi, which is either the peak or the Nth percentile value depending on QoS

requirement. The numerator represents the worst-case peak CPU utilization when the peaks of two

VMs coincide, while the denominator is an aggregated actual peak utilization when VMi and VMj are

collocated into a same server. Thus, the higher Costvm i;j , the lower correlation between VMi and VMj

. Moreover, we can update the values at each sampling period of utilization. Thus, we can save

memory space to store all samples as well as evenly distributing computational effort to measure the

correlation across a certain time horizon.

Using our new Costvm i;j function, we can model correlations among all VMs by constructing a 2-D

matrix, namely, Mvm cost where the (i,j)-th element corresponds to Costvm
i;j .

4.2.2 CORRELATION-AWARE VM ALLOCATION

We allocate VMs such that the correlation among the allocated VMs in Serveri, i.e.,

where nvm

i is the number of VMs allocated to Serveri, is minimized, while the sum of ûcpu(VMi;j) in
the server does not exceed the total CPU capability of the server, i.e., Capi, as well as the number of
the active servers is minimized. The correlation of Serveri is defined as shown in

(2)

where wvm i;j represents a weight of VMi;j , defined as the ratio of û(VMi;j) to the sum of ûό±aƛΤƧύΩǎ ƻŦ
all co-located VMs in Serveri. The problem of finding optimal sets of VMs is a well-known bin-packing
problem [15]. To reduce the solution complexity, we propose a solution based on a First-Fit-
Decreasing heuristic as shown in Figure 4.2. Our proposed algorithm is periodically invoked at every
tperiod. The algorithm is largely divided into two phases: 1) UPDATE (lines 1-8) and 2) ALLOCATE
(lines 9-18). In the UPDATE phase, we initialize parameters and update CPU utilization statistics.
Then, we allocate VMs to servers in the ALLOCATE phase.

18

Figure 4.2 - The proposed correlation-aware VM placement consisting of UPDATE and ALLOCATE phases

In the UPDATE phase, we first initialize a set of unallocated VMs (Vunalloc), sets of allocated
VMs (Valloc i), remaining capacity (Remi) for all servers, and a correlation threshold (THcost) in lines
1-4. Second, we predict the workload based on history, as we previously prepared in [15] (line 5).
Third, we sort VMs in Vunalloc in descending order of predicted ûcpu(VMi) to reduce the
fragmentation of the bin-packing problem (line 6). Fourth, we update Mvm corr by updating the
Costvm i;j for all VM pairs (line 7). Finally, we determine the number of estimated active servers, i.e.,
Ñserver , as presented in Eqn. (3) (in line 8):

(3)

where ~ûcpu represents an estimate of ûcpu . Then, Ñserver is equal to the minimum number of
servers to accommodate all VMs in Vunalloc. We provision VMs to reduce the number of active
servers while satisfying performance requirements. The ALLOCATE phase is iterated until all VMs are
allocated to Ñserver servers (line 9). First, we select a server having the largest remaining CPU
capability, i.e., Remi (line 10). Second, we find a VM to be allocated into Serveri (line 11), which has
the highest Costserver i with VMs in Valloc i , while satisfying two conditions: 1) Cost server i should
be larger than THcost ; and 2) ûcpu(VMi) should be less than or equal to Remi . In case we find a VM,
we update Valloc i , Remi , and Vunalloc accordingly (lines 12-15). The procedure to find VMs to be
allocated in Serveri is iterated until there is VM left (lines 12-16). If we have unallocated VMs at the
end of the iteration, we repeat the procedure (from lines 10-16) with a degenerated THcost by a
ŦŀŎǘƻǊ ƻŦ ʰ (line 17) along with a list of servers sorted in descending order of Remi (line 18).

19

4.2.3 DECISION OF V/F LEVEL

Once all VMs are allocated into servers, we determine an optimal v/f level for each server.
However, we cannot exactly estimate how much we can lower v/f level when multiple VMs are
allocated in a server because Costvm i;j only captures the correlation between two VMs.

Figure 4.3 - Relationship between weighted average correlation in Eqn. (2) and possible v/f scaling factor:

the lower bound of the possible v/f scaling factor has linear relationship with Cost server i

Therefore, we empirically calculate the lower bound of v/f slowdown through Cost server i in
Eqn. (2), as shown in Figure 4.3. X- and Y-axes, respectively, represent a weighted average cost
function calculated with Eqn. (2) and the ratio of the sum of ûcpu(VMi)Ωǎ ƻŦ collocated VMs to the
aggregated peak value of the server, which represents possible v/f slowdown. Based on the
relationship, we can determine the frequency level of Serveri , i.e., fi , as presented in Eqn. (4):

(4)

where fmax is the maximum frequency level. fi is set by lowering the worst-case peak required
frequency level (i.e., the second parenthesis assuming the situation when peaks of VMs coincide)
with a factor of 1=Cost Server i .

5. RESULTS

We validated the proposed datacentre power management approach in two setups. First, we

applied the proposed solution to two web search clusters running on DELL PowerEdge R815 servers

to validate the applicability of the proposed correlation-aware scheme for scale-out applications.

Second, we further investigated the effectiveness to larger scale problems with the utilization traces

obtained from a real datacenter setup.

5.1.1 SETUP-1: DISTRIBUTED WEB SEARCH APPLICATIONS

We built two web search clusters, i.e., Cluster1, and Cluster2, using the CloudSuite benchmarks

[10]. Each cluster consists of three VMs: one is front-end (Tomcat-7.0.23) and two are ISNs (Nutch-

1.2). Note that the CPU utilization of the front-end is quite low compared to ISNs. Thus, we simply

varied the allocation of VMs hosting ISNs. We annotate four ISNs as VM1;1, VM1;2, VM2;1, and

20

VM2;2 where {VM1;1; VM1;2} and {VM2;1; VM2;2} are included in Cluster1 and Cluster2,

respectively. We used Xen-4.1 hypervisor for server virtualization and each VM has Ubuntu11.10 as

ƛǘǎ ƻǇŜǊŀǘƛƴƎ ǎȅǎǘŜƳ όh{ύΦ ²Ŝ ŜƳǳƭŀǘŜŘ ŎƭƛŜƴǘǎΩ ōŜƘŀǾƛƻǊ ǳǎƛƴƎ Faban-0.7 and varied the number of

clients from 0 to 300 with the form of sine and cosine waves for Cluster1 and Cluster2, respectively.

We used two servers each of which consists of 8 cores having two frequency levels, i.e., 1.9GHz and

2.1GHz.

Figure 5.1 - VM placements and CPU utilization traces of (a) Isolated, (b) Shared-UnCorr, and (c) Shared-Corr

We compared three different VM allocations, as illustrated in the upper part of Figure 5.1. 1)

Segregated where each VM is independently running on 4 cores each, 2) Shared-UnCorr where 8

cores are shared with two VMs in a same cluster (i.e., correlation unawareness), and 3) Shared-Corr

where 8 cores are shared with two VMs in different clusters (i.e., including correlation awareness).

Then, Figure 5.2 shows comparisons in terms of the 90th percentile response time.

Figure 5.2 - 90th percentile response time of Cluster1 and Cluster 2 for three different VM allocations

As this figure indicates, the 90th percentile response time in Shared-UnCorr is lower than

Segregated by 43.6% (from 0.275 to 0.155 sec) while Shared- Corr provides another 7.7% lower

response time (from 0.155 to 0.143 sec) than Shared-UnCorr under 2.1GHz. The results can be

explained by observing the CPU utilization traces in Figure 5.1. The X- and Y-axes represent the

elapsed time (in sec) and the normalized CPU utilization with respect to the number of servers,

respectively. The samples are collected at every 1 sec using a Perl script monitoring tool Xenstat.pl.

The reason of the high response time in Segregated case is the inefficient utilization of the allocated

cores. As shown in Figure 5.1(a), VM1;1 and VM2;2 are under-utilized while VM1;2 and VM2;1 are

over-utilized, i.e., approaching their maximum CPU utilization levels, and needs more than 4 cores.

21

Note that the response time of the distributed web search cluster is constrained by the latest VM

because a front-end sends results to clients only after collecting the search results from all ISNs.

Thus, due to the deficiency of the CPU capability of the over-utilized VMs, queries must wait in a

queue for a longer time before being processed. Thus, the response time of Segregated case

becomes longer. On the contrary, Shared-UnCorr enables to efficiently use all the 8 cores in each

server by flexibly scheduling VMs to the cores according to their time-varying demands. This result

supports our claim where we anticipated that the gain attaining from sharing cores among VMs is

much higher than the performance degradation caused by the interference among co-located VMs.

However, the maximum CPU utilization reaches up to 0.88 because two VMs within the same cluster

are highly correlated. Hence, the peaks of the CPU utilizations coincide. Such high CPU utilization can

result in longer response times [13]. We can reduce the peak utilization by allocating VM considering

correlations among VMs in Shared-Corr (Figure 5.1 (c)). In Shared-Corre, the maximum CPU utilization

becomes even and lowered down to 0.6. The improved response time in Shared-Corr can be used to

save power consumption by lowering the frequency level. As shown in Figure 5.2, Shared-Corr running

with 1.9GHz provides almost similar response time (0.155 vs. 0.160 sec) to Shared running with

2.1GHz, which results in approximately 12% power savings.

5.1.2 SETUP-2: UTILIZATION TRACES OBTAINED FROM DATACENTER SETUPS

To further investigate the effectiveness of the proposed solution, we performed another set of

simulations using utilization traces obtained from an actual datacenter. As most of VMs are severely

under-utilized, we selected the top 40 VMs in terms of CPU utilization. We sampled the CPU

utilization every 5 min. for a day while synthesizing fine-grained samples per 5 sec. with a lognormal

random number generator [16], whose mean is the same as the collected value for the

corresponding 5-minute sample rate. Using these utilization traces, we evaluated the effectiveness of

the proposed solution with a virtual testbed consisting of 20 servers. We targeted an Intel Xeon

E5410 server configuration which consists of 8 cores and two frequency levels (2.0GHz and 2.3GHz),

and used the power model proposed in [13]. We performed VM placement every 1 hour, i.e., tperiod=1

hour, with predictions of upcoming workloads using a last-value predictor. Then, we compared the

following three approaches of power management for datacenters:

- Best-Fit-Decreasing (BFD): a conventional best-fit -decreasing heuristic approach.

- Peak Clustering-based Placement (PCP) [6]: a correlation-aware VM allocation which clusters

VMs using its Envelope-based correlation classification.

- Proposed: the proposed correlation-aware VM allocation.

22

Table 5.1 - Comparisons for (a) static and (b) dynamic v/ f scaling

Table 5.1(a) compares the power consumption and performance violations of the three

approaches when we statically set the v/f level at the time of VM placement, i.e., tperiod. The power

consumption results are normalized with respect to the power consumed by BFD, and the maximum

violation shows the maximum per-period ratio of the number of over-utilized time instances (i.e.,

when the aggregated utilization among collocated VMs is beyond the CPU capacity of a

corresponding server) to tperiod, during the entire periods, i.e., 24 hours. The proposed solution

provides up to 13.7% power savings compared to BFD and PCP, while drastically reducing the number

of the violations. It is noteworthy that PCP provides almost similar results with BFD because, due to

high and fast-changing correlations among VMs in our utilization traces, PCP classifies VMs into only

ΨмΩ ŎƭǳǎǘŜǊ ŘǳǊƛƴƎ ǘƘŜ Ƴƻǎǘ of the time periods (22 out of 24 time periods). When the number of

ŎƭǳǎǘŜǊǎ ƛǎ ΨмΩ, PCP behaves exactly same with BFD.

Figure 5.3 - Comparison of frequency distributions in (a) Server1 and (b) Server3

The power savings obtained by our proposed solution are due to the aggressive-yet-safe v/f

settings utilizing the lowered actual peak resource demand, i.e., Eqn. (4). Figure 5.3 compares the

distributions of used frequency levels of BFD and the proposed solution in two servers (we omit the

distribution of PCP, as it is similar to BFD). As shown in the histograms, the proposed solution uses

the lower frequency levels more frequently. Moreover, the proposed solution provides a drastic

reduction of the violations (i.e., 15.6%) compared to the other approaches. Note that we allocated

VMs based on their peak utilizations, which were predicted from their history. Despite the provision

based on the peak utilization, we observed quality degradation over the three approaches due to the

mispredictions of the peak utilization, especially during abrupt workload changes. However, the

proposed solution can statistically reduce the probability of the violation by co-locating uncorrelated

