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2. INTRODUCTION 

2.1 DOCUMENT PURPOSE 

 
This deliverable describes the Aggregated Energy Management System, that is directly linked to 

Task 3.3.1: Communication Strategies Between Aggregator and Data Centres, where the interface 
between the SEMS (Smart Energy management System, See D3.7) of each data centre and the AEM 
(Aggregated Energy management System), in charge of the optimization strategies, are described. 

 
Task 3.3.3: Virtualisation of IT Tasks and Optimised Dispatching and Task 3.4: Design and 

Implementation of a Distributed Framework for State Estimation in the Power Grid are also related, 
since they both perform multi-level optimizations driven from the networked data centres and that 
require as input parameters on a global level the IT loads for the overall network of data centres, and 
potential control signals coming from a smart grid operator, plus the Individual input parameters 
from each data centre (electricity consumption and the PV production forecasting, as well as the 
battery state of charge and the local electricity pricing profiles). 
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2.2 DEFINITION, ACRONYMS AND ABBREVATIONS 

2.2.1 KEY ACRONYMS AND ABBREVATIONS 
 

AEMS Aggregated Energy management System 

BER Bit Error Rates 

CPU Central Processing Unit 

DC Data Centre 

DoD Depth of Discharge 

ePDU Rack Power Distribution Unit 

HW Hardware 

IT Information Technology 

PDU Power Distribution Unit 

PMSM Power Monitor System and Management 

PUE Power Usage Effectiveness 

PSU Power Supply Unit 

PV PhotoVoltaic 

UPS Uninterruptible Power Supply 

SEMS Smart Energy management System 

SW Software 

QoS Quality of Service 

VM Virtual Machine 
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2.3 DOCUMENT OVERVIEW 

 
Section 3 of this deliverable explains the role of The Aggregator; the orchestrator that 

implements the necessary communication strategies to make the Smart Energy management System 
discuss with the higher lever manager (AEMS) to optimize a cluster of Data Centers. Then, in Section 
4 we describe the network model that allows the system to interchange information. Next, Section 5 
presents a test case of geo-distributed DC optimization using a global optimization algorithm, with 
the corresponding results and analysis in Sections 6 and 7. 

 

3. THE AGGREGATOR 

 
The Aggregated Energy Management System describes a layer that receives all the information 

from the DCs. More exactly, it collects statistics from: 
• the microprocessor 
• the Operating System 
• the Hypervisor 
• the smartPDUs and power units 
• the additional HW instrumentation (PMSM sensors, for instance) 

Then, thanks to all these information, it can efficiently manage the temperature, performance, and 
power of the system. The main constraint is to fully respect the IT load. Following objectives are to 
minimise the energy consumption of the network of data centres, maximise the renewable energy 
share, and facilitate the integration within smart grids. 
 

Initially, a special, dedicated device, “The Aggregator”, was conceived to realize such a task, 
interfacing all the components of the system. However, due to the final specifications, The 
Aggregator was no longer needed, since its functionality has been integrated in the Rack Controller 
and the algorithm that is running on it (see deliverables D2.4 and D3.7). More exactly, the mission of 
The Aggregator was to provide a compatibility layer to allow for integration of different components 
from different manufacturers. However, during the development of the project, we have always 
stuck to the same providers: Eaton (UPS, ePDUs), Credit Suisse (Servers), CEA (PVs, chargers) and 
Nissan (Batteries); thus, making unnecessary this extra layer. 

 
Our aggregator (Rack Controller) implements the necessary communication strategies to 

make the Smart Energy management System (SEMS, that optimize the consumption of one DC) 
discuss with the higher lever manager (AEMS) which is able to optimize a smart grid or a cluster of 
Data Centers. The aggregator is the orchestrator at the very high level, and it communicates with the 
DC components using the network; therefore, the first section of this deliverable describes the 
network and latency models used. Then, to prove the advantages of using a well designed data 
aggregator that scales correctly, a case study will be presented where we optimize a geo-distributed 
DC using the described infrastructure. 
 
  



8 

 

 

4. NETWORK AND LATENCY MODEL 

 
The network communications inside geo-distributed DCs play a very important role [1], since 

not only the data has to travel from server to server, also the control commands and information 
must be shared globally. Therefore, all the aggregated information must travel through both local 
and global links, incurring in some delays and a certain latency. For this reason, we have developed 
the Network and Latency Model that is described next. 
 

In order to model the communications accurately, our algorithm considers intra-DC local links 
with bandwidth (BL) (to access the network-attached storage), and inter-DC connections, modeled as 
a full mesh backbone network topology with bandwidth (Bbb). The global links are modeled in the 
presence of bit error rates (BERs) and their probabilities (PBER) associated to the data transmission, 
the speed of light, and distance between DCs. To compute the total latency for both migrating a set 
of VMs (according to VMs size) at time slot T and data communication during the time interval of (T;T 
+1) from multiple DCs to a specific DC, we take into account two parts: 

1) local and global latency for the ith source DC, i.e. Li l and Li,j
g respectively, to transmit 

information through the local and global networks to the jth destination DC 
2) local latency for the jth destination DC (Lj

l ) to transmit data collected from other DCs 
to its storage.  

 
Equation 1 represents the total (worst-case) latency for the jth destination DC (Lj

t ) as the 
summation of the maximum latency between source DCs for transmitting the corresponding data 
through their dedicated local and global links, and local latency inside destination DC. NDC is the total 
number of DCs. 
 
(1) Lj

t = maxi(Li
l +Li

l + Li,j
g ) + Lj

l          i = 1 to NDC and i ≠ j 
 
Local latency of the ith source DC is dependent on the volume of data (Voli,j) ready to be transferred 
to the jth destination DC and its local bandwidth (Bi

L). Therefore, each source DC local latency is 
calculated as: 
 
(2) Li

l = (Voli,j)=Bi
L 

 
The local latency of the jth destination DC is related to the total volume of data received from the 
multiple source DCs and its local bandwidth (Bj

L), computed as: 
 
(3) Lj

l = ƩNDC
i=1,i≠j Voli,j / Bj

L 
 
The global latency includes propagation latency as a primary source and data latency with respect to 
the volume of data being transmitted. Propagation latency is a function of how long the data takes to 
travel at the speed of light (Sl) from source to destination (distance: Disti,j). Data latency (Li,j

e ) is a 
function of the effective bandwidth (Be(t)) and the (BER(t)) (corrupted data must be resent). Hence, 
the global latency is calculated as: 
 
(4) Li,j

g = Disti,j / Sl + Li,j
e  
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To calculate the data latency (Le) in the presence of transmission errors, first we calculate the 
effective bandwidth and, then, we fragment the transmission into the necessary number of time 
steps. Figure 4.1 (Algorithm 1) describes this process analytically. 
 

 

Figure 4.1 – Algorithm 1 - Global Data Latency (Le) w.r.t BER 

5. OPTIMIZATION ALGORITHM FOR GEODISTRIBUTED DCS  

 
While optimal VM placement placement in geo-distributed DCs is a NP-complete problem, 

we propose a two-phase algorithm with low computational overhead that can be applied in real-
time. It consists of VMs clustering for DCs (global dispatching controller), and allocating clusters to 
the servers (local controller). At each time slot T, first the global controller receives the VMs’ loads 
from the previous time interval [T–1,T), data communications, renewable forecast, available battery 
energy and grid price from each DC. Then, we cluster the VMs (available VMs in the system and 
newly arrived), for each DC. After clustering, at local level, distributed in each DC, the VMs are 
allocated to the minimal number of servers. During the time interval of [T,T+1), the local green 
controllers in each DC compensate the difference between real and forecasted load and renewable 
information. 

5.1 GLOBAL PHASE - VMS CLUSTERING 

 
We split this phase into three different steps. First, at time slot T, all the VMs available in the 

system are represented as points in a two dimensional plane (2D plane). Based on the data and CPU-
load correlation properties, as highly data-correlated VMs should be clustered together while highly 
CPU-load correlated VMs should be placed apart, a function is defined to calculate attraction and 
repulsion forces between each two VMs. Equation 5 calculates the force from ith to jth VM (Fi,j

t ) as a 
function of attraction force (Fi,j

a ) based on the data correlation (Corri,j
data) normalized as [-1,0), and 

repulsion force (Fi,j
r ) based on the CPU-load correlation (Corri,j

cpu) normalized as (0;1]. The attraction 
force from ith to jth VM is different from jth to ith VM due to the consideration of bidirectional data 
correlation and calculated as amount of data two VMs exchange. The repulsion force is computed as 
a worst-case peak CPU utilization when the peaks of two VMs coincide during the last time slot. α 
denotes a weighting factor for energy and performance trade-off calculation. 
 
 
 
(5)  
 
 
Initially, at time slot 0, all the points are distributed in the 2D plane. Then, the resultant forces in the 
X (Fi

x), and Y (Fi
y) directions are calculated amongst points (θj,i is the angle) and, as a result, the 
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points are remapped in the 2D plane with new coordinates (Loci
x(k);Loci

y(k)) at each iteration k as 
follows: 
 
 
 
(6)          
 
 
 
where Nvm and t denote the number of VMs (points) available in the system and time period of 
displacement, respectively. The process is iterated until the cost function (CostAR) of the current 
iteration k, expressed as Eq. 7, becomes worse than that in the previous one k-1. We also fix a 
maximum number of iterations to avoid a convergence time overhead. 
 
 
 (7)  
 
 
where di,j

k depicts the distance between ith and jth points at iteration k. This function demonstrates if 
there is either an attraction force between each pair of points (Fi,j

t < 0), and they are attracted to 
each other (di,j

k – di,j
k - 1 < 0), or a repulsion force (Fi,j

t > 0), and they separate away. The final location 
of all the VMs becomes the initial position for the next time slot. In the second step, we first define a 
capacity cap (in Joules) per each DC (cluster) to minimize the operational cost, computed according 
to the available battery energy, renewable energy forecast, grid price and DCs power consumed 
during the last previous time slot; i.e., last-value predictor. 
 

Then, we utilize a modified version of the k-means algorithm to cluster VMs with respect to 
each cluster capacity cap, VMs load, and the distance between two VMs obtained from the repulsion 
and attraction phase in the 2D plane. In the modified k-means, the initial centroid of each cluster is 
calculated based on the last position of points available in that cluster in the previous time slot. In 
this step, we do not consider network latency. At the last step, we revise the modified k-means 
output to meet the hard time constraint for migrating VMs across DCs based on their size as 
described in Algorithm 2 (Figure 5.1). The output of the modified k-means creates two queues per 
cluster (DC): outgoing and incoming. The first one contains the candidates to be migrated outside, to 
another DC, sorted in descending order according to their distances from the corresponding cluster’s 
centroid (Qout). The second one contains the candidates to be migrated to this DC sorted in 
ascending order (Qin). 
 

The algorithm first selects one DC (ith DC) and checks if its previous load (Ri) is less than its 
capacity cap (Capi). Then, it selects the first VM from the head of the incoming queue of the cluster 
(Head(Qi

in)). We migrate this VM if the latency allows; otherwise, we erase it from the queue and 
select the next VM. We repeat and update the DC’s load until there is either no VM to accept or the 
load of the DC becomes more than the cap (lines 5-12). In this later case (lines 13-24), we select the 
VM from the head of the outgoing queue of the current cluster (Head(Qi out )) which has the 
maximum distance to the centroid. If this VM can be migrated, we check the current load of the 
destination cluster and repeat this process there. Otherwise, we select the next one in the cluster. 
This algorithm iterates until violating the latency constraint for all DCs or there is no action to do. 
Unallocated VMs that have been available in the system will stay in their previous DC, and 
unallocated new VMs are assigned to the DCs determined from the modified k-means step without 
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the consideration of the network latency constraint. In this case, we have tried to find the best 
solution for migrating the appropriate VMs when the number of migrations is bounded. We also 
prevent network bottlenecks made by one DC when the other DCs need to migrate their VMs to the 
same destination DC. 
 

 

Figure 5.1 – Algorithm 2 - Migration Step - Modified K-means Output Revision 

5.2 LOCAL PHASE - VMS ALLOCATION 

 
At the local phase, the VMs of each cluster are allocated to servers of their corresponding DC, 

and the optimal frequency for each server is computed. We use only CPU-load correlation to allocate 
VMs to the minimum number of servers, since data correlation (and migrations) mainly contribute to 
inter-DC network bottlenecks [2], [1]. Hence, we base our implementation on the best state-of-the-
art algorithm [3] for VMs allocation. 
 

5.3 THE GREEN CONTROLLER 

 
The proposed VM placement algorithm reduces the dependency on grid energy based on the 

load and renewable forecast. Therefore, we require a low-complexity green controller to 
compensate the difference between real and forecast information with respect to the current 
electricity price of DCs. After allocating all the VMs to servers at time slot T, the green controller 
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inside each DC manages the energy sources during the time interval of [T;T +1) based on the real 
renewable energy and DC energy consumption. When the available renewable energy is more than 
the DC energy consumption, we use this free energy for the DC and the excess energy is stored in the 
battery bank. Otherwise, during the high price period, we use the whole renewable energy for the 
DC’s load and, for the remaining load, we discharge the battery considering its depth of discharge 
(DoD). During the low price periods, we charge the battery by grid energy and we do not use it for 
the DC. 
 
 

6. EXPERIMENTS 

 
We consider three different DCs located in Europe: Lisbon (DC1), Zurich (DC2) and Helsinki 

(DC3), along with their distances (for the network model), time zone and two-level real electricity 
price scenario. Each DC contains 10 rooms and, each room, has 150, 100 and 50 servers for DC1, DC2 
and DC3, respectively. Table 6.1 summarizes the number of servers, PV module size and lithium-ion 
battery capacity (with 50% of DoD, keeping the remaining capacity in case of outage) per DC. We 
target an Intel Xeon E5410 server consisting of 8 cores and two frequency levels (2.0GHz and 
2.3GHz), and use the power model in [4]. For cooling power consumption, we use a time-varying PUE 
model, as in [5]. The DCs are connected through 100 Gb/s full duplex peer-to-peer optical fiber links, 
and the intranet uses 10 Gb/s full-duplex links. Global links experience a BER that is chosen randomly 
from the following distribution: 54% probability of 10-6, 20% of 10-5, 15% of 10-4, 10% of 10-3, and 1% 
of 10-2. 
 

In order to simulate a realistic scenario, DC VMs and energy demand, we sampled the VMs’ 
utilization of a real DC every 5 seconds for one day, and extended it to 7 days by adding statistical 
variance with the same mean as the original traces. For renewable forecast, we implemented the 
algorithm in [6]. Arrival and life-time of each VM, given in time slots, are generated by poisson and 
exponential distributions, respectively. Data correlation between each pair of VMs is generated by a 
log-normal distribution with the mean of 10 MB and uniform variance selection in the range of [1, 4] 
[7]. For migration, the size of the VMs are in the range of 2, 4, and 8 GB according to the distribution 
of 60%, 30%, and 10%. Finally, the global and local controllers are invoked every one hour, and the 
green online controller in each DC is invoked every 5 seconds. We also take into account a hard time 
constrain for migrating the VMs across DCs through the network which guarantees 98% quality of 
service (QoS). 

 
 

 

Table 6.1 - DCs number of servers and energy sources specification. 
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7. RESULTS 

 
We compared our algorithm against three state-of-the-art approaches that are the best in their 

class to optimize operational costs, energy consumption and performance (response time), 
respectively: 

• Cost-aware approach (Pri-aware) [8]. 
• Energy-aware VM allocation (Ener-aware) [3]. 
• Network-aware VM placement (Net-aware) [9]. 
• Proposed: the proposed multi-objective VM placement. 

All the mentioned methods are used jointly with the same local green controller to manage battery 
and renewable energy. 

Operational cost 

Figure 7.1 shows the operational cost normalized by the worst-case value among the mentioned 
methods in the time horizon of one week: 55, 25 and 35% cost savings for the proposed method 
compared to Ener-aware, Pri-aware and Net-aware, respectively. Proposed clusters the VMs by 
specifying a load cap for different DCs based on the grid price and available renewable and battery 
energy. It outperforms the other algorithms when a local energy-aware VM allocation is utilized to 
further reduce DCs’ dependency on grid energy. Differently, Ener-aware uses CPU-load correlation to 
reduce energy consumption and cost in each DC locally but, globally, it cannot efficiently cluster and 
dispatch VMs for right DCs based on available renewable energy, battery status and grid price. In Pri-
aware, the VMs are packed and placed onto DCs and servers with the lowest current grid price, but it 
neglects to maximize free energies usage. Finally, the Net-aware approach provides load balancing 
across DCs which in turn leads to better exploiting free energies (renewable and battery) compared 
to Ener-aware and Pri-aware. However, this algorithm does not consider the electricity price 
diversities and neglects to utilize an energy-efficient management to reduce its dependency on the 
grid. 
 

Energy consumption 

Figure 7.2 shows the hourly energy consumed by the DCs for one week. The total energy 
consumption is 57, 55, 65 and 67 GJ for the Proposed, Ener-aware, Pri-aware and Net-aware 
methods, respectively. The results show 12 and 15% energy improvements for our proposed 
algorithm compared to Pri-aware and Net-aware due to the consideration of the CPU-load 
correlation between VMs, that places highly CPU-load correlated VMs apart, in different DCs and 
servers. This favors consolidation and leads to power savings by lowering the number of active severs 
and their operating frequency. On the other hand, the Ener-aware approach first uses the FFD 
clustering heuristic, placing VMs into the first DC in which its load capacity fits, and then packs the 
VMs into the minimal number of active servers based on the CPU-load correlation. Hence, the DC 
local controller finds a better mapping of VMs to servers when most of the VMs are in the same DC. 
Our algorithm, however, tries to find the best VMs clusters per each DC based on the CPU-load and 
data correlations and determined DCs’ capacity cap. Although these correlations indicate opposed 
goals for energy and performance, Ener-aware only results in 3% energy improvement compared to 
our multi-objective algorithm, while significantly degrading operational costs and performance 
(shown in the next section). 



 

Figure 7.1 - Normalized operational cost                                 
for time horizon of one week. 

 

Figure 7.3 - Probability distribution of normalized 
response time in one week. 

 

 

Figure 7.5 - Cost-Performance trade-off. 

 

Figure 7.2 - Energy consumed by DCs                                        
for time horizon of one week. 

 

Figure 7.4 - Total cost, energy and performance. 

 

 

Figure 7.2 - Energy-Performance trade-off.



Performance 

In this context, performance is defined as response time due to data communication between 
VMs through the network. Figure 7.3 shows the probability density distribution of the response time 
in one week. Note that the response time results are normalized with respect to the worst-case value 
among the methods. As a result, Proposed and Net-aware encompass a range of response time with 
higher average and lower variance compared to Ener-aware and Pri-aware methods. The goal of Net-
aware is to balance the network across DCs, which in turn leads to better worst-case and higher 
average response time (both for times of high and low data demands between VMs). However, when 
compared to Proposed, Net-aware only achieves 2% performance improvement. Ener-aware and Pri-
aware tend to place the VMs on a lower number of DCs, which leads to unbalanced network traffic 
with bigger fluctuations and, accordingly, lower average response time. However, as DCs providers 
consider worst-case response time to guarantee QoS, the proposed algorithm results in up to 12% 
performance improvement compared to state-of-the-art approaches. 
 

Trade-offs discussion 

The experimental results confirm that, by having a holistic approach, we can obtain better trade-
offs in the problem of VM placement. Figures 7.4, 7.5 and 7.6 summarize the benefits of Proposed: In 
the first place, Fig. 7.4 depicts the totals, showing up to 55, 15 and 12% improvements for 
operational cost, energy consumption and performance, respectively. Then, Fig. 7.5 shows the cost-
performance trade-off, with Proposed providing 25 and 12% improvements for cost and response 
time, respectively, compared to Pri-aware. In comparison with Net-aware, it achieves 35% cost 
savings while it leads to only 2% performance degradation. Finally, Fig. 7.6 exhibits the energy-
performance trade-off: our algorithm results in 6% performance improvement with a 3% energy 
overhead compared to Ener-aware; and it provides 15% energy savings and 2% performance 
degradation compared to Net-aware. 
 

8. CONCLUSIONS 

 
This deliverable is focused on the aggregator, the orchestrator that makes possible the tasks of 

control and optimization of geo-distributed DCs. We described the network model that 
intercommunicates the different elements for information interchange and we proposed a novel 
method to tackle the challenges of operational cost optimization and energy-performance trade-off 
on resource-constrained green geo-distributed DCs. 

We introduced the two-phase multi-objective VM placement algorithm along with a dynamic 
migration technique that exploit the holistic knowledge of VMs characteristics. The first phase, i.e. 
global controller, clusters VMs for each DC considering time-varying VMs CPU-load and data 
correlations and the status of DC energy sources. The second phase, i.e. local controller, allocates the 
VMs of each DC cluster to servers exploiting CPU-load correlation. 

Finally, experimental results using a complete simulation framework for geo-distributed 
datacenters developed in GreenDataNet showed that, using the proposed algorithm and 
infrastructure, up to 55, 15 and 12% improvements can be obtained for operational cost, energy 
consumption and performance, respectively, compared to state-of-the-art approaches. It is 
therefore, better to aggregate all the data coming from all the elements of the DCs in order to be 
take more optimized, global, decisions. 
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