 ——EEEN

SEVENTH FRAMEWORK
PROGRAMME

GreenDataNet

D2.5 — Forecasting Algorithm
for Energy Consumption

Status

[Final]

Authors

Prof. Brunelli Davide — UNITN

Prof. Petri Dario, Maurizio Rossi, lIvan Minakov and Davide Sartori — UNITN
Rev 0.5

Contributors:



TABLE OEONTENTS

TABLE OF CONTENTS....itiie ittt imre ettt me e n e et st e s se et e e s nrmr e e s an e e e e smne e e e snneeeesnrmreee e 2
REVISION SHEET......coiitiiiiiiitti ittt rm ettt s bt sam bt e e e bt e e e st e s anbb e e e am e e e e aneeas 3
KEY REFERENCES ANEPORTING DOCUMENIIANS.......cooiiiiiiiiiie ittt 4
1. INTRODUCTIQN. ..ottt sim ettt em et e e s e e st e s am e e e s e e s sre e e s ennr e e s am e 6
1.1 DOCUMENT PUMPOSE ....eiiiiiiiiiiiiiicc et aba s s e e e s s araae e e s 7
1.2 DOCUMENT OVEIVIEW ...ttt bbb bbb b s ae et 8
2. RELAED WORKS.....ccc ottt ettt ettt ekttt 4kt e 4 s bt e e e ma e e s st e e e mb e e e e et e e e e mnn s 9
3. ENERGY FORECASTING .. ..ottt sttt ettt e s e e eme e s e e nnne e e s nnnne s 11
3.1 o] L =To I AT g T d=Y o] e Y- [of s 1= S PRT 11
3.2 D BTl R 13
N 1] U ] R 1 TP PP SRR 17
T O 1o Y = | ST UU PR PSPPI 22
B.  CONCLUSIONS.....coiittitee ittt ettt ettt et et ek bt e e ea b et e e aab e et e s b bmbe e e e sabe et e sabb e e e s nbbn e e s nsbmrneees 23



REVISIONSHEET

Revision Brief summary of changes

Number

Rev 0.4 30/11/2015 Internal Revisions




KEY REFERENCEND SUPPORTINBOCUMENTATIONS

[1] IDC Corporate, “Idc finds growth, consolidation, and changing ownership patterns in
worldwide datacenter forecast,” 10 Nov. 2014, Press Release.

[Online] http://www.idc.com/getdoc.jsp?containerld=prUS25237514

[2] Jack Clark, “IT now 10 percent of world’s electricity consumption, report finds,” The Regis-
ter, 16 Aug. 2013 (Accessed on 20 Mar. 2015).

[Online] http://www.theregister.co.uk/...worse _than_you thought/

[3] Rick Merritt, “Dell, IBM give thumbs up to ARM Servers,” EE Times, 17 May 2010.

[Online] http://www.eetimes.com/document.asp?doc_id=1256326

[4] . Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Designing and managing datacen-
ters powered by renewable energy,” IEEE Mim, vol. 34, no. 3, pp. 8-16, 2014.
[5] AFCOM, “Data Center Size and Density Standards,” accessed on 28 Mar. 2015.

[Online] http://www.afcom.com/publications/

[6] M. Rossi, A. Toppano, and D. Brunelli, “Real-time optimization of the battery banks lifetime
in hybrid residential electrical systems,” in Proceedings of the conference on DesignpAut
mation & Test in Europe (DATE)ropean Design and Automation Association, 2014, p.

139.

[7] C. Bergonzini, D. Brunelli, and L. Benini, “Comparison of energy intake prediction algorithms
for systems powered by photovoltaic harvesters,” Microelectronics Journalol. 41, no. 11,
pp. 766777, 2010.

[8] M. Rossiand D. Brunelli, “Electricity demand forecasting of single residential units,” in Eny-
ronmental Energy and Structural MonitoriBgstems (EESMS), 2013 IEEE Workshop on
IEEE, 2013, pp. 1-6.

[9] D. Macii, G. Barchi, and L. Schenato, “On the role of phasor measurement units for distribu-
tion system state estimation,” in EnvironmentaEnergy and Structural Monitoring Systems
(EESMS), 2014 IEEE Workshosem 2014, pp. 1-6.

[10] E.S. Gardner, “Exponential smoothing: The state of the art Part II,” International Journal of
Forecastingvol. 22, no. 4, pp. 637-666, Oct. 2006.

[11] S.-Y.Bang, K. Bang, S. Yoon, and E.-Y. Chung, “Run-time adaptive workload estimation for
dynamic voltage scaling,” ComputerAided Design of Integrated Circuits and Systems, IEEE

Transactions orvol. 28, no. 9, pp. 1334-1347, 2009.


http://www.idc.com/getdoc.jsp?containerId=prUS25237514
http://www.theregister.co.uk/2013/08/16/it_electricity_use_worse_than_you_thought/
http://www.eetimes.com/document.asp?doc_id=1256326
http://www.afcom.com/publications/

[12] J. Kim, M. Ruggiero, and D. Atienza, “Free cooling-aware dynamic power management for
green datacenters,” in High Performance Computing and Simulation (HPCS), 2012aintern
tional Conference onEEE, 2012, pp. 140-146.

[13] NWSC, “Green Technology - Raising the Bar in Data Center Efficiency,” accessed on 25 Mar.
2015.

[Online] https://nwsc.ucar.edu/green

[14] 1. Goiri, W. Katsak, K. Le, T. D. Nguyen, and R. Bianchini, “Parasol and greenswitch: Manag-
ing datacenters powered by renewable energy,” in ACM SIGARCH Gauter Architecture
News vol. 41, no. 1. ACM, 2013, pp. 51-64.

[15] P. Goodwin, “The holt-winters approach to exponential smoothing: 50 years old and going

strong,” Foresightpp. 30-33, 2010.


https://nwsc.ucar.edu/green

1. INTRODUCTION

Data centers have been rapidly increased in number during the last decade and this trend will con-
tinue in the next future, because of the rise of cloud computing, the huge growth of mobile devices,
the continuing development of new IT services and loT applications [1]. Along with market trends,
environmental awareness and energy savings are becoming a very relevant issue for data centers
managers and regulatory bodies, since, 10% of the global consumption of electrical energy has been
estimated to be consumed by IT infrastructures [2]. To tackle the electrical energy demand of the IT
infrastructures many solution are currently under investigation both in academia and industry, like
new computing hardware based on low power ARM architectures [3] and “green” data centers that
exploits renewable energy sources to mitigate the load on the electricity Grid [4]. The most valuable

solutions are envisioned in the design of mega data centers of the future [5].

So far, all the bigger companies in the IT market (Amazon, Google, Apple...) have already introduced
renewable energy sources in the supply chain of their infrastructures in different ways, for example
wind and solar power plant are used to generate green energy while free cooling helps to reduce
(sometimes even replace) the utilization of conditioning systems (HVAC) at those latitudes where

outside temperature is below 20° Celsius all the year.

Energy consumption forecasts are required to optimize the use of renewable energy resources,
through auxiliary energy storage systems, not only in data centers, and many approaches has been

proposed in literature to solve renewable integration in such management systems [6].

Renewable energy sources are unpredictable by nature but in many cases, estimating their short-
term trend (one day ahead) with small error (Mean Average Percentage Error — MAPE — close to 10%)
is possible, as it has been demonstrated in [7] and also discussed in D3.4. Similar results can be ex-

pected when dealing with electricity demand prediction at building scale (few tens of KWs) [8].

While forecasting methods of renewable energy sources can be used for a broad range of applica-
tions (e.g. domestic and industrial plants, standalone embedded monitoring systems, etc.); predic-

tion techniques of the energy consumption are more related to specific target requirements.

So far, Datacenter’s environment has gathered few efforts for the prediction and the analysis of the
electricity consumption because most of the time IT infrastructures run at constant performance

level to guarantee uninterrupted availability of hosted services.



Electricity consumption in this case results almost flat, at a first glance, and at constant level every
day of the year. For this reason much simpler approaches have been used so far. This characteristic
of data center is going to change in the next future with the large scale introduction of low-
power/high-performance computing units with highly varying energy requirements, for example
servers that can be dynamically switched off according to the workload (more details will be provid-
ed in the following) and this will determine unexpected peaks or shift levels. In this case the im-

portance of tailored forecasting algorithms will be the key to achieve optimal energy management.

Predictions of electrical energy demand are gaining a lot of attention also from electricity Grid man-
agers. The transition to the smart grid (namely the transformation of the electrical energy transmis-
sion and distribution grids into a self-monitoring/-healing network where distributed generation, bi-
directional flows of energy and supply-demand balance will be automatically adjusted) requires a set
of new instruments to enable the unsupervised, machine based management, starting from a more
precise state estimation. Along with new measurement instrumentation (e.g. Phasor Measurement
Units) and control algorithms the state estimation can significantly take advantage from so-called

pseudo-measurements like predictions and historical data [9].

1.1 DOCUMENT PURPOSE

This deliverable describes how to tackle the problem of forecasting energy consumption of data cen-
ters considering stochastic methods for time-series analysis. Starting from the specification provided
by work package 1 (WP1), in particular on the software architecture specification (D1.5) and the re-
sults obtained in the same work package (WP2), we evaluated algorithms that can be integrated in
the software environment of GDN (as a module) that exploit the historical data collected by the mon-
itoring system (D2.1) and will provide useful information that will be used for Smart Grid integration
(D3.13) along with data coming from other modules (for example PV production forecasting as de-

scribed in D3.4).

We selected the Holt-Winters (HWT) forecasting algorithm and compared its performance with the
traditional persistence approach currently used in literature. This exponential smoothing technique
was demonstrated as optimal solution for a very general class of state-space models, broader than
the traditional autoregressive methods, which have higher memory requirements too. Additionally,
we evaluated an extended HWT implementation that was demonstrated in literature [8]. We consid-
ered power traces of real data centers provided by GreenDataNet project's partners, which are char-

acterized by different dimensions and exhibit different features. The results achieved by the pro-



posed algorithm show better performance than the reference method with highly variable work-
loads, where the latter one faces significant limitations. Comparable results have been obtained in all

the other cases.

The algorithm, opportunely shaped, will be then implemented in the final demonstrator as a soft-
ware module to facilitate the prediction of the power/energy consumption of different data center

subsystems as highlighted in the project’s outline depicted in Figure 1.

Figurel. The forecasting algorithm role in the GDN project framework

1.2 DOCUMENT OVERVIEW

The document is organized as follows, Sec. 2 briefly introduces the state of the art in the related
fields, Sec. 3 describes the data-sets used and the forecasting algorithms under comparison while
Sec. 4 presents the simulations results’. Finally Section 5 illustrates the interface of the SW library for

integration in other GDN tools, while Section 6 concludes the deliverable.



2. RELATED WORKS

Despite the huge number of attempts presented in the last five years about modeling local and dis-
tributed data center resources, not enough efforts have been dedicated to analyze forecasting
methods for energy consumption prediction. Researchers in this field target their analysis to the pre-
diction of CPU utilization and workload evolution in time, to optimize the usage of resources employ-
ing Dynamic Voltage and Frequency Scaling (DVFS) techniques. In this case a prominent approach is

to use Kalman filters [11] which has been demonstrated to be effective in several works [12].

CPU utilization however, is not directly related with energy consumption of the data center and it is
not the most power hungry component in the system since cooling, power transformation, distribu-
tion and management subsystem and the network infrastructure are examples of continuously run-
ning equipment with high energy demand. To measure the energy performance of a data center the
“Green Grid”, an association of IT organizations focused on making data centers more energy effi-
cient, introduced the Power Usage Effectiveness index which is today the de-facto standard perfor-
mance assessment indicator for data centers. Even if the PUE of future data center generations is
targeted to be slightly higher than one (1.0x) (thanks to low power electronics, free cooling and re-
source optimization), today most of the data centers around the world run in the range 1.5 to 2.0

PUE [13].

To achieve these goals and reduce today the PUE to around 1.3 as the GreenDataNet target, effective
energy resources management must be implemented and forecasting is an essential tool as de-
scribed in [4], [14]. The articles present a pilot “green” data center which is equipped with the last
generation ARM architecture servers. The pilot has been equipped with a small photovoltaic (PV)
plant and a combined HVAC/free-cooling system to demonstrate the advantages of such integration
of new technologies and to test their state-of-art energy management algorithm. The controller op-
timizes the renewable energy usage exploiting an energy buffer (an improved UPS system made with
Li-ion batteries) and shaping the execution speed of the workload. The optimization algorithm im-
plements different forecasting tools for workload, renewable energy and total energy consumption
of the data center. However the energy consumption forecasting module is based on the simplistic
“persistence” approach, where it is assumed that the values expected for the next time-horizon is

exactly the same of the previous one.

As far as we know this is the most widely used approach for this task in data center scenario, since

energy consumption exhibits stationary features.



We will show that this is not always true, data centers energy consumption may vary significantly
depending on e utilization (cloud services against higgrformance computing), thus dedicated

and specialized processing tools are necessary to achieve optimal performance in the prediction
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3. ENERGY FORECASTING

In this section we summarize the two forecasting algorithms evaluated in the comparison, then we
briefly discuss the four data-set used, presenting their features and specific characteristics, before

entering into the details of the simulation results’.
3.1 FORECASTING APPROACHES

As introduced in Sec. 3, the most used method to predict energy consumption in data center man-
agement application is the so called “persistence” approach, where past samples are simply replicat-
ed to generate the forecast. This approach has great performance for stable and constant consump-
tion profiles. However the performance rapidly decreases if in the time-series exist some periodic
patterns that are different from the forecasting horizon. For example, corporate buildings have high
energy requirements during working days and almost none during weekends, if the forecast is com-
puted on a daily basis we can expect large errors during both transitions from weekdays to weekends
and vice versa. The same applies to data centers, for example companies may decide to run specific
tasks (market analysis, consolidation of the data, etc.) on a fixed working day or monthly, generating

a specific pattern that cannot be predicted with persistence.

This scheme has been compared with an algorithm from the class of exponentially weighted moving
average (EWMA) methods, namely the Holt-Winter exponential smoothing technique (HWT in the
following). This algorithm was developed more than sixty years ago to analyze the stock exchange
market. Since then, many researchers have worked with this scheme and nowadays several versions
exists, each one tailored to a specific scenario [15]. This scheme has been design to exploit up to
three periodical patterns (called seasonalitiesin forecasting time-series. The main advantage with
respect to standard exponential smoothing methods (ARMA, ARIMA and so on) is the reduced

memory requirements and like those, it can be automatically tuned using a training phase.

We selected the single seasonality version in additive configuration, which is a general purpose im-
plementation and it is the most widely used version of the method [10]. As it will be shown in the
following, one seasonality has been considered sufficient to analyze the available data-sets. This
scheme is based on four equations, reported in Equation 1 for the sake of completeness, that com-
pute the average value of the sequence in the past (Level), the trend of evolution in the future
(Trend) and a seasonal term (Seasonality, which allows to exploit the presence of repetitive patterns)

and finally the last equation computes the weighted sum of the previous terms as forecast. In the

11



scheme, t is the time stamp of the input samples (t = 0,...,N, N: total number); k is the index of the to-
be-forecast samples (k = 1,...,K, K: total length of the forecast) and p is the length of the seasonality in

samples.

bQUIY | & O p | tOY Y
Yi QPR 1Y Y p T t Y
YQOOI £ DOGTQdGY p 1 {0

OET QBDGIT® Y Y O
Equationl. Additive definition of the HoltWinters forecasting &orithm.

Now, we show how this scheme perfectly fits data center energy consumption profiles. All the expo-
nential smoothing algorithms require a training phase to tune the parameters (a, y and 8) in accord-
ance with input time series’ features. In this case the parameters have been optimized feeding his-
torical data to the scheme and using a multivariate optimization algorithm to explore the state space.
Basically the optimization starts with the evaluation of some statistical parameters of the input time-
series to initialize the level, trend and seasonality terms, then, iteratively, a multivariate optimization
algorithm selects the parameters using a quasi-Newton method (several numerical optimization li-
braries exist that implement multivariate optimizers like the BFGS algorithm®) and with these popu-
lates the level, trend and seasonality terms; in the end of each iteration the forecast is evaluated and
the error with respect to the reference time-series is computed. The error is then used in the next
iteration by the multivariate optimizer to update the set of parameters and the whole process is re-
peated until the solution converges to the optimum (optimality criterion depends on the numerical
optimizer chosen). Figure 2 graphically depicts this optimization process while [10] provides more

details about implementation, tuning and optimization methods.

Additionally, we included the prediction update criterion as presented in [8] (named hwt_acp) to

recursively refine the HWT forecast by simulating new incoming data in a real-time fashion.

! The Broyden—Fletcher—Goldfarb—Shanno (BFGS) algorithm is an iterative method that approximates the New-

ton’s method for solving unconstrained nonlinear optimization problems.
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Figure2. Block scheme of the HWT algorithm

3.2 DATA-SETS

We used four different data-sets to evaluate and compare the performance of the HWT with the
“persistence” method (reference in the following). Figure 3 to Figure 6Figure 5 show a glimpse of
these data-sets, namely from A to D, provided by project partners. In particular, data-sets A, B and C
were provided by Credit Suisse and represent the whole consumption of three of their IT rooms, with
different workloads. The data-set D instead was provided by Eaton and represents the power con-
sumption of an entire test data center they own. Together these four data-sets illustrate very differ-
ent scenarios and depict a scenario broader than the urban data center target of the GDN frame-
work, but they resulted very helpful in illustrating the effectiveness of the proposed forecasting ap-

proach in the cloud data center scenario as the conclusion of this deliverable will illustrate.

The original time-series (drawn with solid lines and marked as “series” in the pictures) are averaged
power consumption samples, acquired every few seconds over a five minutes time-window, corre-
sponding to 288 samples per day. The same series were further averaged to obtain hourly values
(drawn with dashed lines and marked as “hourly_avg” in the pictures) and to reduce the number of

samples to 24 per day. This choice allowed us to compare the methods both in terms of horizon of
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the forecast (one day versus one week) and granularity (288 samples per day as fine-grain case
against the coarse-grain, “smoothed”, 24 hourly values per day). All the data-sets span over a two
months interval so it was possible to evaluate forecasting horizons of one week at most with a daily

seasonality for the HWT seasonality pattern.
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Figure3. One week of data from datset A, solid line mark the original series while dashed line the filtred

one.

The main differences among these four traces are the order of magnitude and the deviation from the
mean value, specific features that allow characterizing the kind of data center under analysis. Con-
stant and flat power consumption profiles characterize general purpose cloud and corporate data
centers, where services reliability must be as close as possible to 100% so all the IT equipment are
configured to work with constant performance and hence supply, regardless of the workload and the
energy wasted. Rapidly varying power profiles characterize high-performance computing, such kind
of systems are located, for example, in research centers where incredible amount of data must be
processed in parallel (for example in particle physics and weather forecast tasks) and computing ca-
pabilities are offered for lease to anyone can pay. In this case the number of running servers depends
on the number of tasks and simulations to execute. For example it may happen with highly parallel-
ized applications where each thread has a lot of data to transfer to/from the storage memory
(GBytes), in this case modern servers exploit low power states instead of waiting in idle mode, saving
a lot of power and generating the variable consumption profile.
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Figure4. One week of data from datset B, solid linemarks the original series.

Figure 5, shows the power consumption of a small data center consisting of two racks with 5 servers
each, and an almost constant workload, this represent a cloud data center of a small company where
the maximum variation is lower than 300 VA. The other data-sets, in order two medium- and one
large-size data center, show highly variable workloads and power consumption. In particular Figure 4
shows the energy consumption profile of a medium data center targeted to high-performance com-
puting, with last generation servers that can be dynamically switched-on/-off according to the work-
load. This specific feature can significantly decrease the power consumption of data centers (in this
case a variation of approximately 30 kVA), particularly in conjunction with virtualized environments
where tasks are virtual machines that can be migrated and packed in the minimum number of physi-
cal servers required. Figure 3 and Figure 6 show two cloud data centers where the equipment are less
stressed with respect to the high performance computing case. Figure 6 shows also the effect of the
installation of new equipment in a preexisting data center, which is an extreme situation that is quite
complex to handle with automatic forecasting schemes. Finally we can observe that all of these trac-
es exhibit some periodic patterns that are superimposed to a stable and constant signal. This is the

specific characteristic that we are going to exploit by means of the HWT method.
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4. RESULTS

We realized several sets of simulations for each data center; starting with the data-set of 5 minutes
span samples we simulated one day and one week horizons (288 and 2016 samples), the same pro-
cedure was executed with the hourly averaged data-sets (24 and 168 samples), with all prediction
techniques for comparison. Results are presented in terms of MAPE of the forecast with respect to

the real trace and are summarized in Figure 7 to Figure 10.

1.8
B hwt_series

16 —
m hwt_acp

1.4 - reference

Figure7. Comparative results for one day forecasi,min sample frequency

The evaluation of the reference method is pretty straightforward (computed as the difference of two
sets of samples corresponding to two consecutive time-horizons) with a quite small memory and
data-set size requirements (a trace for one day is enough to predict the following one). The HWT
method on the other side, in accordance with the family of exponentially weighted moving averages
methods, requires a large data-set only for training the model of the time series to forecast. Once the
modeling phase is completed, a number of samples corresponding to the size of the seasonal pattern
to exploit is required to compute the prediction. In this case we employed a daily pattern. The data-
sets are two months long and with those it was possible to set one week as maximum time horizon in
order to have enough data to train the model (six weeks for training, one week as historical data and

the last week to validate the prediction and compute the MAPE).
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Figure8. Comparative results for one week forecast, 5 min sample frequency

Both methods (hwt_acp is to consider a special case of the Holt-Winters and will be discussed sepa-
rately) exhibits very high performance for the very short forecast horizon of one day (Figure 7 and
Figure 9), with a maximum percentage error lower than 2%. That is remarkably low. In this case we
can conclude that using a lower number of samples (hourly averages instead of 5 minutes) does not
affect the performance of the forecast but significantly reduces the memory requirements and the
execution time of the HWT algorithm (particularly the training phase). Moreover, considering the one
day ahead case, we can observe that the proposed approach outperforms the reference method in
all the data centers except for the A case, where anyway the error is very small (around 0.3%). This
result is particularly of interest since the best performance can be observed in the case of data center
B, the one where modern infrastructures and dynamic power management is implemented, as de-
scribed above. In this case 1% improvement is obtained with samples of 5 minutes span, while al-

most 0.5% in the hourly case.

On the other hand, considering the weekly horizon of forecast (Figure 8 and Figure 10), clearly the
HWT performance are worse than the reference suggesting that for such kind of horizon the daily
pattern exploited in the method is not the best option. With larger data-sets it would be possible to
evaluate different patterns’ time-length and maybe extend the analysis to include multiple seasonali-

ty schemes in the comparison.
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The hwt_acp refinement scheme further increases the performance of the base HWT one which are,
however, really good. Further experiments are required to evaluate its effectiveness since it implies a
trade-off between increasing the computational complexity of the forecasting algorithm and improv-
ing the prediction (we obtained a gain up to 3% in the weekly forecast with samples of 5 minutes

span and data center C).

7 T
B hwt_hourly_avg

6 ® hwt_acp
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Figure10. Comparative results for one week forecast, hourly averaged data
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Finally, Figure 11 and Figure 12, graphical underline the relevance of a forecasting algorithm with
respect to the reference persistence approach in case of data-set B and D respectively. In both pic-
tures it is highlighted the error that one could have faced in case a persistence approach had been

used with respect to the HWT approach.
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Figurel2. Detailed representation of the forecasting impact with datset D
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Although the percentage error representation, presented before, gives the idea that both forecasting
scheme have comparable performance (since averaged on a number of experiments) these two ex-
amples underline the impact that a smart approach can have in fulfilling the goals proposed by the
GDN framework. With this kind of predictions and in particular its capacity to handle abrupt changes,
it would be easier to integrate ancillary services for the smart grid in the resource planning of the
whole data center energy management chain of components, for example in the SEMS and AEMS

software presented in D3.7 and D3.11 respectively.
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5. PORTABILITY

The HWT forecasting software and the other methods evaluated in this deliverable have been im-
plemented in Python (v2.7) for portability and ease of deployment on different platforms. For the

sake of the GDN project it will be reshaped in the form of a shared library or standalone tool accord-

ing to partners’ needs and requirements.

In the current implementation, the software runs within Python’s interpreter command window, and
the location of the input time-series can be passed to the hwt command in the invocation, along with

other simulation parameters (humber of time-slots, seasonality length, etc.).

Input and Output files currently contain comma separated values (CSV) with the following format:

Timestamp, Power(kVA)

2014-11- 01 01:00:00,18.5001371667

2014-11- 01 02:00:00,18.5210731667

2014-11- 01 03:00:00,18.5705728333

e

where each line represents a time-slot and the corresponding value. Additionally the HWT software
produces a log file with all the output information related from the optimization tool, like the Error

and the values of the optimized parameters.
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6. CONCLUSION

“Green” data centers integrate renewable energy sources in their electricity supply chain to reduce
the impact of their energy consumption on the electrical Grid. The main issue in this integration pro-
cess is to optimize the usage of renewable energy by means of energy buffers and dynamically tuning
the server’s workload. In this deliverable we present the analysis of two different electricity forecast-
ing methods that are of primary importance to solve the optimization problem. We consider the tra-
ditional “persistence” approach against the Holt-Winters exponential smoothing algorithm, that was
demonstrated as optimal solution for a very general class of state-space models, has lower memory
requirements than the traditional autoregressive methods and has been successfully demonstrated

in applications of energy demand forecasting.

Our results show that the proposed approach has better performance than the reference method
with highly variable workloads which is particularly of interest for energy-aware “green” data cen-

ters.
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